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ABSTRACT

Microsoft Windows is the most popular operating system (OS) for
personal computers (PCs). With hundreds of millions of users, its
app marketplace, Windows Store, is one of the largest in the world.
As such, special considerations are required in order to improve
online computational efficiency and response times.

This paper presents the results of an extensive research of effec-
tive filtering method for semi-personalized recommendations. The
filtering problem, defined here for the first time, addresses an aspect
that was so far largely overlooked by the recommender systems
literature, namely effective and efficient method for removing items
from semi-personalized recommendation lists.

Semi-personalized recommendation lists serve a common list to
a group of people based on their shared interest or background. Un-
like fully personalized lists, these lists are cacheable and constitute
the majority of recommendation lists in many online stores.

This motivates the following question: can we remove (most of)
the users’ undesired items without collapsing onto fully personal-
ized recommendations?

Our solution is based on dividing the users into few subgroups,
such that each subgroup receives a different variant of the original
recommendation list. This approach adheres to the principles of
semi-personalization and hence preserves simplicity and cacheabil-
ity. We formalize the problem of finding optimal subgroups that
minimize the total number of filtering errors, and show that it is
combinatorially formidable. Consequently, a greedy algorithm is
proposed that filters out most of the undesired items, while bound-
ing the maximal number of errors for each user. Finally, a detailed
evaluation of the proposed algorithm is presented using both pro-
prietary and public datasets.
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1 INTRODUCTION

Modern recommender systems such as Netflix, Amazon, and Win-
dows Store, offer a diverse set of different recommendation lists.
Some of these lists are fully personalized, while some are non-
personalized or semi-personalized. Fully personalized lists are unique
lists prepared per user, e.g., by ranking items to each user based on
collaborative filtering [5, 8]. In contrast, non-personalized lists are
computed once for all users. For example, the lists of popular items
or an editor’s recommendation list. Semi-personalized lists are com-
puted for subsets of users sharing common interests. For example,
in music recommendations genre-based lists can be served to all
users who showed interest in a specific genre. Another example
is showing users popular items in their geographical location, e.g.,
“popular in your country”. In addition, many types of clustering
algorithms can be used for generating semi-personalized lists [7].
Most literature on recommender systems deals with fully person-
alized recommendation lists [2] as they are more algorithmically
challenging. However, in many online stores, such as the Windows
Store, semi-personalized lists account for the majority of recommen-
dations presented to users. The popularity of the semi-personalized
lists is arguably the result of online experiments that often expose
the superior KPIs of these lists (e.g., "Most Popular”) when com-
pared to fully personalized lists. Moreover, an essential advantage
of such lists is that they are easier to compute, store and deploy.
Most of the recommender systems literature concerns with the
problem of finding the best items that should be presented to the
users. However, there are many cases in which it is worthwhile to
detect items that should not be presented and remove them from
the users’ lists. One obvious example is the desire to remove items
that the user already purchased. As another example, consider
the case of negative correlations between items, e.g. when users
who acquired item A tend not to acquire item B: then it may be
beneficial to mark item B as an “undesired item” for all the users who
acquired item A. In other cases, we may wish to remove potentially
inappropriate content for certain groups (e.g. children). Last, as
also noted in [6], it may be constructive to filter out recommended
items that already had several unsuccessful impressions. While the
logic for detecting undesired items greatly varies between different
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recommender systems, almost all real-world recommenders employ
some sort of filtering mechanism.

This work is not concerned with choosing the specific items to
be filtered. Instead, we assume that such filtering is required and
propose a method to perform it efficiently.

A naive approach might be to remove the undesired items for
each user individually. However, this solution suffers from a major
drawback, as it leads to a fully personalized system rather than
a group-based one, thereby losing the simplicity and cacheability
advantages of the latter. To be more concrete, filtering undesired
items for each user can be done either offline, by generating all
users’ lists in advance, or online, by generating each user’s list
on-demand. An offline calculation would require storing a huge
amount of lists, of the order of the number of users, which prohibits
caching and thereby tremendously impacting response times. On
the other hand, online calculation would require both reading the
user’s set of undesired items (non-cached) as well as CPU time
for filtering the list on-demand. In both cases, the I/O process of
reading a list per user may be prohibitive, particularly in large scale
systems such as Windows Store which serves O(10%) users and
handles O(10%) requests per second.

This observation motivated our search for efficient filtering meth-
ods, the results of which we present in this paper.

We focus on a semi-personalized approach that allows to remove
undesired items by precomputing a modest number of variants of
the original recommendation list with different subsets of items
removed from each one. The optimization objective of finding these
lists and assigning the users is formalized in Section 2. A key ad-
vantage of this scheme is the fact that recommendations remain
fully cacheable due to the small number of precomputed lists, and
requires no additional CPU or I/O online. This allows us to have the
cake and eat it too: the algorithm removes most of the undesired
items while maintaining a semi-personalized approach. Further-
more, a recommender system can use a semi-personalized algorithm
(for example, clustering [7]) and on top of it to use our approach to
remove undesired items which will yield even better KPIs. In the
remaining part of the paper we present and evaluate the Pick &
Merge algorithm which accomplishes this task. Employing the Pick
& Merge algorithm in Windows Store demonstrated a dramatic
reduction in both computation and space complexities.

2 OUR APPROACH

Our solution is based on dividing the users into subgroups, accord-
ing to the users’ set of undesired items. Then, a set of items is
removed from the recommendations of all the users in each sub-
group. This semi-personalized approach implies the existence of
two types of errors: (1) false negative items - desired items that are
erroneously removed from the list; (2) false positive items - failing
to remove an undesired item. The challenge is to minimize the total
number of these mismatches, while bounding them for each user
individually.

2.1 Formalizing The Filtering Problem

For a list of size k, there are 2¥ subsets of undesired items (each
item is either desired or not). Each subset can be represented by a
bit-string of length k, where 0 and 1 indicate desired and undesired
item respectively. The set of all possible bit-strings is denoted by
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Fu1 = {0,...,2F — 1} and each user is associated with the unique
bit-string that encodes the user’s set of undesired items. We denote
by a; the number of users that are associated with the bit-string
i € F and mark the number of false-negative and false-positive
errors for user u by fn(u) and fp(u), respectively.

Next,we turn to formalize the filtering problem at hand: Given an
ordered recommendation list of size k, a set of undesired items for
each user, a maximal number of subgroups (M), and the maximal
allowed number of false-negative (n) and false-positive (p) errors,
the filtering problem seeks to find:

(1) A set of M subgroups Fapr = {fo, ..., fm-1} € Fan-

(2) Amap : Fy — Fu,
such that: (a) There are at most n false negative items for each user:
fn(u) < n,Vu; (b) There are at most p false positive items for each
user: fp(u) < p,Vu; and (c) It minimizes v(u) = fn(u) + fp(u), the
number of item violations for user u, over all users, i.e. it minimizes:

D oW =Y aiD(i, map(i), (1)

u i€Fy

where D(i, j) is the Hamming distance between bit-strings i and j.
Note that the choice of the input parameters depends, largely, on
the specific domain and the particular business needs. For example,
the choice of the p parameter can be dictated by an answer to the
following question: “what is the maximal number of undesired
items in the individual user’s list, beyond which the user’s trust is
expected to deteriorate?”.

To appreciate the combinatorial challenge of the filtering prob-

lem, consider the case of a recommendation list of size k = 10 and

k
M = 16 allowed subgroups, where there are (?\/1) = (1(1)24) > 10% op-

tions to choose the M subgroups. This shows that even for relatively
short lists, the task of finding a small number of optimal subgroups
is formidable and can not be done in an exhaustive manner.

We thus adopted an approximated approach, based on a greedy
algorithm, which we present next.

2.2 The Pick & Merge Algorithm (P&M)

The proposed algorithm, denoted Pick & Merge (P&M), is inspired
by the notion of a “walk on a hypercube’, see e.g. [3]. A hypercube
of dimension k is an undirected graph of 2K nodes (see Fig. 1 for the
case k = 3). Each node can be associated with a bit-string of size
k, and the graph is structured such that two nodes are connected
by an edge if and only if their bit-strings differ by exactly one
bit. In the context of the filtering problem each node represents a
possible users’ subgroup and merging a node with a “right” (“left”)
neighboring node increases the number of false negative (positive)
items by 1. The bounds on the number of false negative and positive
items then have a simple visualization: each node is allowed to
“walk" at most p edges to the “left” and at most n edges to the
“right" on the hypercube.

The P&M algorithm iteratively picks a subgroup i and merges it
onto another subgroup j, such that subgroup i is removed from the
set of possible subgroups, and the size of subgroup j increases by
aj, the number of users in subgroup i. In order to minimize the loss
in Eq. 1, subgroup i is chosen to be the smallest one, i.e., with the
smallest number of users a;, whereas subgroup j is chosen to be its
closest and largest neighbor (a point on the hyper-cube). In addition,
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to fulfill the conditions on maximal false negative and false positive
items, a single subgroup i is allowed to be merged onto a subgroup
j # i, and we write “i — j is allowed”, if and only if: (1) bit-string j
has at most n 1’s that are not in i; and (2) bit-string i has at most p
1’s that are not in j. We denote by H(i) the set of subgroups that
were so far merged onto subgroup i and note that when merging
the subgroup i onto j, it is further required that for all subgroups
h € H(i) it holds that h — j is allowed. This iterative procedure,
whose pseudo-code is given in Alg. 1, continues until there are only
M subgroups left or until no further merging is allowed, in which
case a set of more than M subgroups is returned. This constitutes
the first phase of the algorithm.

Algorithm 1: Pick & Merge (phase I)

Input: M, k, n, p
Output: A set Fapr = {fo, fi, ---» famr—1} of M’ bit-strings
- Initialize: Fy = {0, ..., 2% =1}
- Initialize: F; = 0
- Initialize: H(i) = i, Vi € F
while (|Fy + F;| > M) and (Fy # 0) do
- Find bit-string i = argming ag,s.t. f € Fy
-Find J C Fy, s.t. Vh € H(i),Y j € J, h — j allowed

if J == 0 then
Fo=F\i
F1 = Fl Ui
else

-d =min;D(i, j),st.j €]
- Find bit-string j = argmaxy ag,st. f € J, D(i, f) = d
- Merge i — j:
aj =aj+aj
Fo=Fy\i
H(j) = H(j) UH(i)
end if
end while
Return Fpp = Fy U Fy

Once the set Fyys of all the subgroups are fixed, the algorithm
enters its second phase, where it maps all the users onto these
subgroups. In particular, it performs the mapping:

map(i)=argmin;D(i, j), i€ Fy, j€ Fpp,i—j allowed, (2)

which minimizes the Hamming distance between i and j, for all
allowed subgroups j.

2.3 Toy Example

To facilitate a better understanding of the P&M algorithm, Fig. 1
shows a particular example for a fictitious user distribution over
a hypercube of dimension k = 3. It indicates that 400 users have
no undesired items and are thus associated with the subgroup 000,
whereas for 85 users the second item in the list is undesired (010),
etc. In this particular distribution a total of 1065 undesired items

are presented to the users!, following the loss calculation of Eq. 1.

For the case of M = 2,n = 0, and p = 2, the algorithm returns
the subgroups 000 and 010, marked with full circles. In the first
iteration, subgroup 011, which is the smallest subgroup, with only
50 users, is merged onto its closest and largest left neighbor, the

1400*0+(60+85+105)*1+(50+95+90)*2+115*3=1065.
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010 subgroup. The iterative process ends after six iterations, with a
total loss of 7252

5b
N

Figure 1: (color online) A fictitious user distribution spread
over a hypercube of dimension 3. Numbers in boxes repre-
sent the number of users associated with the correspond-
ing bit-strings. For the parameters: M = 2,k = 3,n = 0, and
p = 2 the P&M algorithm returns the subgroups 000 and 010,
marked by filled, green, circles.

3 EVALUATION AND DISCUSSION

We evaluate the performance of the P&M algorithm on both public
and proprietary datasets. First, we consider the MovieLens [4] and
the Netflix [1] datasets and then present the practical impact of the
algorithm on propriety data from Windows Store. The MovieLens
[4] and Netflix [1] datasets specify dated users’ ratings for movies.
The MovieLens dataset is composed of 138K users, 27K items, and
20M rating; and the Netflix dataset accounts for more than 480K
users, 17K items, and 100M ratings. Items are ranked based on their

total sum of ratings.
100 -l None =]
(2] Pick & Merge

80
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40 +
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[
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Figure 2: Accumulative percentage of Netflix users with x or
less undesired items.

The P&M algorithm requires several input parameters (M, k, n, p).
As mentioned above, the choice of these input parameters greatly de-
pends on the specific business requirements. We have tested many
different parameter configuration, but encountered no qualitative
differences in the algorithm behavior, other than those expected,
such as: increasing the value of sub-groups M reduces the number of
undesired items in the users’ list. Thus, to avoid redundancy and due
to scope limitations, we stick throughout this section to a single
choice of parameters, namely: k = 10,n = 0,p = 5. In addition, M
was set to the minimal value found by the algorithm: M = 28 for
the MovieLens dataset and M = 26 for the Netflix dataset.

2400*0+60*1+85*0+105*1+50*1+952+90*1+115*2=725.
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We begin by comparing the original unfiltered lists to the new
filtered lists, generated by the P&M algorithm, in terms of the
number of undesired items presented to the users. Fig. 2 shows
the accumulative percentage of users that are presented with x or
less undesired items, before and after applying the algorithm on
the Netflix dataset. P&M increases the percentage of users with no
undesired items by ~1.5 times. Furthermore, up to x = 4, the number
of users with as few as x undesired items is almost twice compared
to the original list. Finally, while in the original list more than 35% of
the users have more than five undesired items, P&M diminishes this
number to zero (since p = 5 was used). This example showcases the
effect of the P&M algorithm on the final recommendation lists. In
particular, it shows that the algorithm succeeds in removing a large
portion of undesired items from the users’ lists while using only a
small number of subgroups. Moreover, it ensures a good-enough
users’ experience for all users, including more that 35% of users that
were otherwise neglected. The same analysis on the MovieLens
dataset yielded very similar trends (not shown).

Next, we compare P&M with two base-line filtering methods:
the RandGroups approach simply chooses M subgroups at random,
whereas the MaxGroups method chooses the M most populated
subgroups. Clearly, both methods do not adhere to the constraints
on the maximal number of false negative and positive items. To
facilitate yet a meaningful comparison, we enforce zero number of
false negative items (n = 0)>. The second phase of the algorithm,
i.e. mapping the users to the M subgroups, remains otherwise the
same as in the P&M algorithm.

Tables 1 and 2 summarize the performance of each method for
MovieLens and Netflix respectively, specifying the following: (a)
The mean-absolute-error (MAE), i.e. the mean number of undesired
items users receive in their list; (b) The mean-squared-error (MSE),
the average of the squared number of undesired items. MSE gives
a higher weight to users with many undesired items; (c) The per-
centage of users with more than two undesired items; and (d) The
percentage of users with more than p = 5 undesired items.

%users with | %users with
Method MAE | MSE Fp(u)>2 Fp(w)sp
None 4.2 27.3 65% 36%
RandGroups 2.0 5.7 37% 0.4%
MaxGroups 1.58 5.7 31% 2.4%
P&M 1.62 4.1 28% 0

Table 1: Comparing filtering methods - MovieLens.

%users with | %users with

Method MAE | MSE Fp(u)>2 Fp(w)sp
None 3.9 27.3 61% 31.5%
RandGroups 21 7.7 38% 4.7%
MaxGroups 1.5 5.3 26% 3.3%
P&M 13 3.3 19% 0

Table 2: Comparing filtering methods - Netflix.

Both tables indicate that all the filtering approaches improve
the quality of the recommendations by decreasing the number of
undesired items. However, P&M provides the largest improvement
under most of the evaluated criteria. The MaxGroups method per-
forms the best out of the baselines and in the case of the MovieLens
dataset it even achieved the best MAE (marginally better than P&M).

3This is attainable via using the 0 . . . 0 subgroup by default.
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Naturally, this comes at the cost of violating the condition on the
number of false positive items. Note, that P&M leaves no users with
more than p = 5 unfiltered items.

The practical impact of applying P&M in Windows Store is
shown next. We consider the “most popular” items list of size k = 10
and our test-set includes a random sample of 42K users that ac-
quired an item in the store during a single day in March 2018. On
average, each user had about 1.5 previously purchased items that
needed filtering. To fill up the void left by the filtered items, lower
ranked items were pushed towards the top. Our evaluation focuses
on the canonical recall metric that indicates the average conditional
probability that an item resides in the recommendation list, given
that the user later acquires it.

Figure 3 shows the recall in Windows Store as a function of the
number of recommendations when no filtering is applied (solid,
squares, black), when fully personalized filtering is applied (dotted,
stars, blue), and when P&M is applied (dashed, circles, red)4. As
expected, fully-personalized filtering does increase the recall. For
short list’s size, P&M follows the full personalization curve almost
perfectly. It deviates from it as the list’s size increases. Here, the
P&M algorithm found a minimal number of M = 13 subgroups.
Clearly, employing a larger number of M subgroups would decrease
the gap between P&M and fully-personalized filtering even further.
In fact, applying M = 100 leads to a recall curve that is hardly distin-
guishable from the fully personalized one (not shown). This analysis
shows that P&M, despite providing merely semi-personalized filter-
ing, succeeds in restoring most of the fully-personalized filtering,
and that such a filtering has a great potential to improve the per-
formance of the recommendation lists.

0.2
=3+ Fully personalized filtering
—@- Pick & Merge
_ 0.15 —— No filtering )
© T
S A
& o1 v
0.05

Lists size (k)

Figure 3: (color online) Windows Store dataset; Recall as a
function of list’s size.

4 SUMMARY

In this paper, we turned a spotlight towards a concept that so
far received very little attention in the literature, namely the im-
portance of marking items as undesired and filtering them out of
recommendation lists efficiently. In particular, we motivated a semi-
personalized approach for item filtering which enables cacheability.
We formalized the problem and presented the Pick & Merge al-
gorithm which removes a large portion of undesired items while
bounding the number of false negative and false positive errors
per user. Employing the Pick & Merge algorithm in the Windows
Store marketplace demonstrated a dramatic reduction in both com-
putation and space complexities. We believe that the algorithm
and insights presented in this paper could be beneficial to other
repartitioners working on large-scale recommender systems.

“For confidentiality, all curves were scaled by a constant.
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