
Towards Scalable and Accurate Item-Oriented
Recommendations

Noam Koenigstein
School of Electrical Eng., Tel Aviv University

noamk@eng.tau.ac.il

Yehuda Koren
Google, Israel

yehuda.a.koren@gmail.com

ABSTRACT
Most recommenders research aims at personalized systems,
which suggest items based on user profiles. However, in real-
ity many systems deal with item-oriented recommendations.
In such setups, given a single item of interest, the system
needs to provide other related items, following patterns like
“people who liked this also liked...”.

While item-oriented systems are central in their impor-
tance, they have been approached so far using very basic
tools. We identify several hurdles faced by standard ap-
proaches to the item-oriented task. First, the sparseness of
observed activities prevents establishing reliable similarity
relations for many item pairs. Second, we address a scalabil-
ity challenge at the retrieval stage present in many real-world
systems: Given an item inventory, which may encompass
millions of items, it is desired to identify the most related
item pairs in a sub-quadratic time. This work addresses
these two challenges, thereby improving both accuracy and
scalability of item-oriented recommenders. Additionally, we
propose an empirical evaluation scheme for comparing the
quality of different solutions with encouraging results.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining

Keywords
collaborative filtering, item-based recommendation

1. ITEM BASED RECOMMENDATIONS
Most research on recommender systems is focused on mod-

eling relations between users and items. New items are rec-
ommended to users based on their past purchases or activi-
ties. However, in reality user profiles are often not available
(e.g., when a user is new or not logged-in) or irrelevant (e.g.,
when the current, short-term interest is unrelated to longer
term inclinations). Therefore, many industrial systems are

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s). Copyright is held by the author/owner(s).
RecSys’13, October 12–16, 2013, Hong Kong, China.
ACM 978-1-4503-2409-0/13/10.
http://dx.doi.org/10.1145/2507157.2508221.

based on item-oriented recommendations, where item sug-
gestions are solely based on their relatedness to a small set of
currently considered items. Such recommendations aim at
highlighting alternative items or items that are often bought
together. A well known example of such a recommender is
Amazon’s shopping cart recommender. Amazon’s system
capitalizes on customers impulse buying patterns [10] – i.e.,
when a customer is currently considering a specific book,
the system suggests to her more books that are often sold
together. This real-world popular recommendation setup is
characterized by inferring the recommendations based on the
user’s current interest rather than on her long term activity
history. In general, these item-oriented systems employ sig-
nals like “users who liked this product also liked...”, which
are directly mined from usage logs.

While evidentially used in practice, we are not aware of
many published scientific works addressing collaborative-
filtering item-oriented recommendations. This is not very
surprising as the problem seems rather simplistic compared
to personalized recommendations, which indeed may use
item-item relations internally. After all, one could argue that
simply counting co-usage patterns among items can almost
directly deliver the required similarity scores in the form of
item-item conditional purchase probabilities, or other pair-
wise similarity metrics (e.g., cosine and Jaccard similari-
ties, etc.). However, we wish to highlight two shortcomings
of such straightforward retrieval techniques. First, point-
wise counting of item-item co-occurrences requires an ad-
equate support for both items. Hence, similarities related
to items subject to less user activity cannot be estimated
reliably. Second, a näıve retrieval of most recommended
items requires evaluating all possible items for each target
item. Therefore, computing all related item pairs requires
a quadratic time which is hard to scale as item inventories
grow in size. The scalability issue could be alleviated by dif-
ferent pruning rules or by caching results, yet we suggest a
more systematic solution which accounts for both scalability
challenges as well accuracy challenges.

We present Euclidean Item Recommender (EIR) which is
a new method for identifying related item-pairs while ad-
dressing the two aforementioned shortcomings. Instead of
determining item-item relations by the limited number of
co-occurrences, we represent item-item conditional probabil-
ities through latent factor vectors which are learned using a
“global ” learning algorithm. Our method is utilizing the en-
tire training data rather than just the pairwise information.
Hence, we achieve a smooth estimation of item-to-item re-
lations that facilitates more reliable recommendations even

for rarely co-purchased item pairs. Furthermore, the latent
factor vectors are embedded in a Euclidean space, thereby
allowing a fast retrieval of most similar items using metric
trees, without requiring the consideration of all possible item
pairs. Finally, another contribution of this work is the es-
tablishment of a modeling and experimentation scheme for
item-oriented recommendation, which employs existing user
preference datasets.

2. RELATED WORK
Item-item neighborhood methods are well studied in the

academic literature [10, 13]. We share with these works the
need to derive pairwise relations between items. However,
our research is item-oriented rather than user-oriented. Un-
like previous work, we do not model the users in our dataset.
We focus on modeling the item-item relations directly.
Some prior works [9, 12] used latent factors for represent-

ing item-item relations. This work also follows this path
with several distinctions. First, we aim at item-oriented rec-
ommendation dictating a different cost function and training
method. In addition, we emphasize fast retrieval which is
facilitated by embedding the factor vectors in a Euclidean
space, rather than the inner-product space used by others.
Our usage of Euclidean embedding shares some similari-

ties with a recent work on Euclidean matrix factorization [7].
However we model item-item relations and not user-item re-
lations. Beyond this, a fundamental distinction between the
works is that we address the implicit feedback case and not
explicit ratings, which is in fact the common case in most
systems where explicit rating data is not present. Implicit
feedback requires a different formulation based on maximiz-
ing likelihood rather than squared error minimization [6].
In addition, we propose a novel way of incorporating biases
into the model without hindering the effectiveness of the fast
retrieval.

3. MODELING PAIRWISE RELATIONS
We represent item-item relations through their conditional

probabilities. That is, given items i and j we will estimate
P (j|i), the conditional probability that a user consuming
item i will consume item j as well. The conditional prob-
abilities will be learned by embedding all items in a low-
dimensional Euclidean space. An item k will be represented
by a d-dimensional vector yk ∈ Rd, and a scalar bias bk. The
latent item vectors are designed to capture item similarities
and the biases capture popularity patterns independently of
other co-consumed items. To this end, we define the condi-
tional probability P (j|i) by the multinomial distribution

P (j|i) = exp(−∥yi − yj∥2 + bj)∑
k exp(−∥yi − yk∥2 + bk)

. (1)

Note that we assure
∑

j P (j|i) = 1. Finally, given a training

set D, containing item pairs of co-consumed (or co-liked)
items, we seek to learn model parameters that maximize
the log-likelihood of the training set:

log-likelihood{D} def
=

∑
(i,j)∈D

logP (j|i) . (2)

3.1 Optimization process
Learning proceeds by stochastic gradient ascent. Given

a training pair (i, j) we update each parameter θ (a latent

vector component or a bias) by

∆θ = η
∂P (j|i)

∂θ
=η

[
∂

∂θ

(
− ∥yi − yj∥2 + bj

)
+
∑
k

P (k|i) ∂

∂θ

(
∥yi − yk∥2 − bk

)]
,

(3)

where η is the learning rate. However, such a training
scheme would be too slow in practice as each update rule
requires summing over all items. We thus resort to sampling
the weighted sum in (3) based on the importance sampling
idea proposed by Bengio and Senécal [2]; see also Aizenberg
et al. [1] for a related usage of the technique.

With importance sampling we draw items according to
a proposal distribution. In our case we assign each item a
probability proportional to its empirical frequency in the
training set (fraction of train pairs containing the item),
and denote this proposal distribution by P (i|D). Items are
sampled with replacement from P (i|D) into a list L. Using
L, we approximate P (k|i) for each k ∈ L with the weighting
scheme

w(k|i) = exp(−∥yi − yk∥2 + bk)/P (k|D)∑
l∈L exp(−∥yi − yl∥2 + bl)/P (l|D)

. (4)

Consequently, the approximated gradient ascent step given
a training pair (i, j) will be

∆θ =η

[
∂

∂θ

(
− ∥yi − yj∥2 + bj

)
+

∑
k∈L

w(k|i) ∂

∂θ

(
∥yi − yk∥2 − bk

)]
. (5)

As mentioned in [2], it is desirable that the size of the set L
grows as the training process proceeds because at later train-
ing phases more delicate parameter adjustments are needed.
Hence, we employ a simple rule for controlling the sample
size (|L|) based on the fitness of the current estimate. Given
a training pair (i, j), we keep sampling items into L until the
following condition is satisfied:∑

k∈L

P (k|i) > α · P (j|i). (6)

The adaptive sampling automatically lets the sample size
grow when parameters are nearing final values and the cor-
rect paired item is getting a relatively high probability. In
our implementation we used α = 3. We impose a minimal
size of 5 on the sample size. For efficiency we also limit the
maximal sample size to 500.

4. FAST RETRIEVAL
Retrieval time of recommendations is a key factor when

designing real-world large-scale systems that need to address
tens of thousands of queries per second [8]. A major design
goal of EIR is enabling fast pairing of items. In this setting,
the task of efficiently retrieving recommendations requires
finding items that the user is most likely to purchase given
the item she is currently considering. Namely, we wish to
find an item j that maximizes:

max
j ̸=i

P (j|i) ⇔ max
j ̸=i

−∥yi − yj∥2 + bj . (7)

Items Users Training Test
Netflix 17,749 478,488 53,414,617 941,614
MSD 384,526 1,019,296 45,078,691 2,037,890
YMusic 433,903 497,881 40,362,704 984,162
Books 340,536 103,723 1,068,842 66,306

Table 1: The number of items, users, training-set
examples and test-set examples in each dataset.

It is easy to see that by ignoring biases we are left only
with the squared Euclidean distance between the two items
vectors, and the retrieval is reduced to a simple nearest
neighbor task. Nevertheless, biases are a key contributor
to recommendations accuracy, and should not be dismissed.
We therefore propose a simple transformation to reduce the
problem in (7) to that of a simple Euclidean search. For
each item vector yj , we define a concatenated item vector
ŷj as follows:

ŷj = [y⊤
j ,

√
Mb − bj]

⊤ ∈ Rd+1, (8)

where Mb is the maximum bias (Mb = maxj bj). We also
define a concatenated query vector as follows:

ȳi = [y⊤
i , 0]⊤. (9)

It can be easily shown that (7) is equivalent to:

max
j ̸=i

P (j|i) ⇔ min
j ̸=i

∥ȳi − ŷj∥2. (10)

Therefore, this transformation facilitates a variety of Eu-
clidean nearest neighbor algorithms e.g. Metric Trees, or
Locality Sensitive Hashing (LSH).

5. EMPIRICAL STUDY

5.1 Dataset Construction
We evaluate our algorithm using four different datasets:

Netflix [3], the Million Song Dataset (MSD) [4], Ziegler’s
books’ reviews1 (Books) [16], and Yahoo! Music (YMusic)
[5]. Our work is focused on implicit ratings, however of
the four aforementioned datasets only the MSD dataset is
implicit. Therefore, we simulated imlicit data from the ex-
plicit datasets as follows: In Netflix, we first filtered only
the ratings with a value ≥ 4. We then produced a dataset
of “co-liked”movies – namely, movies that were liked by the
same users. For the YMusic dataset, we repeated the same
process for ratings ≥ 80. In the books dataset we simply
used all the data-entries in order to create a dataset of co-
consumed books that were read and reviewed by the same
users (regardless of the review). Finally, in all datasets we
generated item pairs as follows: For each user we created a
random cyclic order of the items consumed by her. Then,
the final dataset is comprised from all the pairs of consecu-
tive items.
We split our datasets into train and test subsets by ran-

domly choosing a subset of users and placing all their item
pairs in the test-set. Table 1 summarize the final datasets
statistics.

5.2 Baselines
We compared performance against traditional item-item

similarity measurements:

1www.informatik.uni-freiburg.de/~cziegler/BX/

• Empirical Conditional Probability (ECP): Empirical
measurement of the conditional probability P (j|i) de-
fined as

P (j|i)empirical =
ni,j

ni + 1
,

where ni is the total number of occurrences of item i
in the dataset, and ni,j is the number co-occurrences
of i and j together (counts were smoothed by adding
1).

• Jaccard Similarity: Jaccard similarity is a well know
similarity measure defined as

Jaccard(i, j) =
ni,j

ni + nj − ni,j
.

• Cosine Similarity: Cosine similarity is another widely
used similarity measure defined as

Cosine(i, j) =
ni,j√
ninj

.

Note that ranking based on these similarity measures differ
in the way of normalizing the co-counts (ni,j).

5.3 Accuracy Results
Wemeasure performance in terms of Mean Percentile Rank

(MPR). This metric was earlier used in studies of implicit
feedback datasets within the context of personalized recom-
mendations [6, 14]. In our item-oriented context, it is de-
fined as follows: For each test pair of related items (i, j) we
sample N additional random items. We rank every item k
(the N random ones and j) with respect to P (k|i) based on
our model. Then, we compute the percentile rank of item j
within this ranking. Ranks are averaged over all test pairs.
Accordingly, percentile ranks closer to zero indicate better
rankings. We used N = 200 in our experiments, though re-
sults are insensitive to changes in N given the large number
of test pairs.

We trained the EIR model with d = 50 dimensions. Ta-
ble 2 presents the MPR results of EIR against the baselines.
We were encouraged by the fact that our algorithm outper-
formed the baselines on the Netflix, MSD and the Books
datasets. On the YMusic dataset, our algorithm was second
to ECP with a very small difference between the two.

Figure 1 depicts the mean percentile rank of the different
algorithms vs. the support (popularity) of the conditioned
item i in P (j|i). While all the algorithms perform well on
popular items, EIR has a clear advantage in the long tail.
This is explained by the fact the EIR employs global op-
timization that utilize the entire training data rather than
just the pairwise information. Among the different baseline
algorithms, ECP is most similar to EIR. This is to be ex-
pected, as ECP is merely an empirical estimate of P (j|i) –
the objective of EIR.

5.4 Fast Retrieval Results
We evaluate the fast retrieval capabilities of EIR using

metric trees [11, 15]. Metric trees are binary space-partitioning
trees widely used for the task of indexing Euclidean datasets.
The tree construction is very fast and space efficient, and the
search employs the depth-first branch-and-bound algorithm
similar to that of [15]. We quantify the improvement in
retrieval time for the task described in (7) when using the

0

10

20

30

40

50

60

70

80

90

10 100 1000 10000 100000

M
e

a
n

 P
e

rc
e

n
ti

le
 R

a
n

k

Item Support

EIR

ECP

Jaccard

Cosine

Figure 1: Mean Percentile Rank (MPR) vs. the support of the conditioned item i in P (j|i) in the MSD
dataset (lower is better).

EIR ECP Jaccard Cosine
Netflix 5.825% 6.57% 9.728% 8.376%
MSD 6.602% 13.663% 35.287% 49.18%
YMusic 2.837% 2.536% 9.795% 9.545%
Books 27.342% 35.902% 53.896% 61.011%

Table 2: Comparing MPR of EIR against common
baselines (lower is better).

Netflix MSD YMusic Books
Speedup 25.036 21.422 31.219 11.218

Table 3: Speedup values for EIR with 50 dimensions

metric tree compared to a näıve search as follows:

Speedup =
Retrieval Time Using Naive Search

Retrieval Time Using Tree
. (11)

The speedup values for each dataset are presented in Table 3.

6. SUMMARY
We tackle item-oriented recommendations, where the goal

is to find items related to the current item. Our approach
is centered around a method embedding items and their bi-
ases within a Euclidean space in a way that preserves co-
consumption patterns. A unique feature of our embedding
is its being Euclidean thereby facilitating fast item retrieval
with readily available data structures suitable to the Eu-
clidean space. We demonstrated the efficacy of the method
in terms of both accuracy and indexing time.

7. REFERENCES
[1] N. Aizenberg, Y. Koren, and O. Somekh. Build your

own music recommender by modeling internet radio
streams. In WWW, 2012.

[2] Y. Bengio and J.-S. Senécal. Quick training of
probabilistic neural nets by sampling. In Proc. 9th
International Workshop on Artificial Intelligence and
Statistics (AISTATS’03), 2003.

[3] J. Bennett and S. Lanning. The netflix prize. In Proc.
KDD Cup and Workshop, 2007.

[4] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and
P. Lamere. The million song dataset. In Proceedings of
the 12th International Conference on Music
Information Retrieval (ISMIR 2011), 2011.

[5] G. Dror, N. Koenigstein, Y. Koren, and M. Weimer.
The yahoo! music dataset and kdd-cup’11. Journal Of
Machine Learning Research, 18:3–18, 2012.

[6] Y. Hu, Y. Koren, and C. Volinsky. Collaborative
filtering for implicit feedback datasets. In ICDM,
pages 263–272, 2008.

[7] M. Khoshneshin and W. N. Street. Collaborative
filtering via euclidean embedding. In RecSys, pages
87–94, 2010.

[8] N. Koenigstein, P. Ram, and Y. Shavitt. Efficient
retrieval of recommendations in a matrix factorization
framework. In CIKM, 2012.

[9] Y. Koren. Factor in the neighbors: Scalable and
accurate collaborative filtering. TKDD, 4(1), 2010.

[10] G. Linden, B. Smith, and J. York. Industry report:
Amazon.com recommendations: Item-to-item
collaborative filtering. IEEE Distributed Systems
Online, 4(1), 2003.

[11] F. P. Preparata and M. I. Shamos. Computational
Geometry: An Introduction. Springer, 1985.

[12] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme.
Factorizing personalized markov chains for next-basket
recommendation. In WWW, pages 811–820, 2010.

[13] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Item-based collaborative filtering recommendation
algorithms. In Proceedings of the 10th international
conference on World Wide Web, WWW ’01, pages
285–295. ACM, 2001.

[14] H. Steck. Training and testing of recommender
systems on data missing not at random. In KDD,
pages 713–722, 2010.

[15] J. K. Uhlmann. Satisfying general
proximity/similarity queries with metric trees. Inf.
Process. Lett., 40(4):175–179, 1991.

[16] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and
G. Lausen. Improving recommendation lists through
topic diversification. In Proceedings of the 14th
international conference on World Wide Web, WWW
’05, pages 22–32, 2005.

