
Xbox Movies Recommendations: Variational Bayes Matrix
Factorization with Embedded Feature Selection

Noam Koenigstein
Microsoft R&D

Israel
noamko@microsoft.com

Ulrich Paquet
Microsoft Research

Cambridge, UK
ulripa@microsoft.com

ABSTRACT
We present a matrix factorization model inspired by chal-
lenges we encountered while working on the Xbox movies
recommendation system. The item catalog in a recommender
system is typically equipped with meta-data features in the
form of labels. However, only part of these features are in-
formative or useful with regard to collaborative filtering. By
incorporating a novel sparsity prior on feature parameters,
the model automatically discerns and utilizes informative
features while simultaneously pruning non-informative fea-
tures.

The model is designed for binary feedback, which is com-
mon in many real-world systems where numeric rating data
is scarce or non-existent. However, the overall framework
is applicable to any likelihood function. Model parameters
are estimated with a Variational Bayes inference algorithm,
which is robust to over-fitting and does not require cross-
validation and fine tuning of regularization coefficients. The
efficacy of our method is illustrated on a sample from the
Xbox movies dataset as well as on the publicly available
MovieLens dataset. In both cases, the proposed solution
provides superior predictive accuracy, especially for long-tail
items. We then demonstrate the feature selection capabili-
ties and compare against the common case of simple Gaus-
sian priors. Finally, we show that even without features, our
model performs better than a baseline model trained with
the popular stochastic gradient descent approach.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Filtering

General Terms
Recommender System, Feature Selection

1. INTRODUCTION
The item catalog in a recommender system is often equipped

with many meta-data features in the form of labels, tags,
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or a “bag-of-words”. These features consist of a word or a
short phrase describing the item. For example, for movies
we may have features such as Funny, Martial Arts, and Os-
car Winner. Some of these features are highly informative
with regard to the recommendation task, but many others
are redundant or irrelevant. We therefore present a matrix
factorization (MF) model with an embedded feature selec-
tion mechanism which on the one hand identifies and utilizes
informative features, and on the other hand ignores and sup-
presses non-informative features. This approach is success-
fully used to enhance movies recommendations in the Xbox
marketplace, serving more than 50 million users [11, 15].

Feature selection algorithms typically belong to one of
three categories: wrapper methods, filter methods, or em-
bedded methods. Wrapper methods evaluate subsets of fea-
tures by training a model with each subset and scoring on a
held-out set. This approach is independent of the prediction
algorithm in use, but scales poorly for large commercial sys-
tems with many features. Filter methods use heuristic mea-
sures such as Mutual Information or Pearson Correlation to
score features based on their informative power with regard
to the prediction target (e.g. in the context of recommen-
dation system see [19]). These methods are more scalable
than wrapper methods as they do not require training many
models. However, they are highly dependent on the specific
heuristic metric used to score the features, and there is no
structured approach or clear guidelines for preferring one
metric over the other. The proposed solution in this work
belongs to the last category – embedded methods. These
are a family of algorithms in which feature selection is per-
formed during model construction. Embedded methods are
not based on cross-validation and therefore scale well with
data size. The features are chosen based on their relative
usefulness and informative power with regard to the predic-
tion task at hand (not based on some external heuristic).

In this paper we present MF-EFS – Matrix Factorization
with Embedded Feature Selection. MF-EFS is a matrix fac-
torization model aided by item features in the form of la-
bels. The features are notably used to improve accuracy by
mitigating the “cold-start” problem in items1. As explained
next, not all features are informative in a recommendation
task. MF-EFS automatically discerns and utilizes the infor-
mative features while “ignoring” the non-informative ones
by encouraging sparsity and setting non-relevant parame-
ters to near zero values. In this paper we do not assume
the presence of numeric ratings; it is a setting shared by
most real-world recommender systems. MF-EFS is a binary

1 User features can be introduced in an equivalent way.



model based only on like / dislike observations, or implicit
usage patters such as watch / didn’t watch or buy / didn’t
buy. However, its feature selection framework is general and
can be extended to numeric ratings as well as other types of
data.

This paper makes several contributions: Firstly, we pro-
pose a novel model that can utilize features to improve long-
tail accuracy. It is especially effective in systems with a large
catalog, many long-tail items and many features. The al-
gorithm is unique in its sparsity encouraging property and
can easily cope with many non-informative features. Sec-
ondly, the training is based on Variational Bayes inference
that is less prone to over-fitting and does not require cross-
validation [10]. While we are not first to present a Vari-
ational Bayes MF model [13, 16, 17], MF-EFS is different
than these previous works. Variational Bayes inference tech-
niques are still relatively new in our field, and we hope the
reader will benefit from the discussion and comparison to
more traditional training methods. Finally, we highlight
real-world challenges that arose while working on the Xbox
recommender system. We present “working” solutions that
may benefit applied scientists and academics who are de-
signing similar systems.

1.1 Related Work
Many previous studies dealt with combining content data

with collaborative-filtering (CF) data. A substantial body
of work deals with hybrid models and the reader is referred
to [5] for a survey of these methods. Notably, Basilico et
al. proposed a unified approach that integrates user-item
ratings as well as content-based data into a single feature
domain [2]. A different direction was taken by [6], where the
items’ taxonomy was used to improve accuracy in predicting
music ratings. Our solution differs from these approaches in
its embedded feature selection, its Variational Bayes infer-
ence, its use of binary data, and its real world application
and scale.

The“bag-of-words” representation for item meta-data was
studied by [1] and later in [22]. Both works combine an MF
model with a Latent Dirichlet Allocation (LDA) model. In
essence, these are multi-task models where the LDA compo-
nent learns a structure on the item-to-feature relations by
assigning latent topics to each of the items. Common pa-
rameters are used to explain both the user-to-item patterns
as well as the item-to-feature patterns. In general, this ap-
proach can improve accuracy in the long-tail. However, it
is a delicate practice that may eventually hurt the overall
accuracy, as the multi-task nature of the model forces the
common parameters to find a fine balance between the two
goals of the system.

This work is dedicated to improving a CF based recom-
mender; the modeling of features is therefore merely a means
to an end. Another key difference from [1] and [22] is that
we assume a small number of features per item that may
not suffice for learning topic mixtures on the items. Fur-
thermore, we assume that the features are noisy and many
are non-informative with regard to the CF task. Our model
therefore needs to be robust to these features, and still take
full advantage of the few informative features.

Notation.
We reserve special indexing for distinguishing users from

items: for users m, and for items n. We assume a model with
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Figure 1: A graphical model of MF-EFS with N
users, M items and K features.

M users and N items, and binary observations (e.g. ‘like’,
‘dislike’ ). We denote by rmn = 1 the fact that user m
liked item n, and by rmn = 0 otherwise. We denote by

D
def
= {rmn} a dataset of such ratings, and use Ω(m)

def
=

{n : rmn ∈ D} to index a user’s rated items, and similarly

Π(n)
def
= {m : rmn ∈ D} to index an item’s raters (users).

We distinguish vectors and matrices from scalars by using
bold letters. We capitalize when denoting matrices and use
minuscule letters for vectors, e.g. X is a matrix, x is a vector
and x and X are scalars. As explained above, every item
in our model is associated with a set of features in the form
of descriptive labels. We assume a dictionary of k = 1 . . .K
labels and denote by Ln the set of labels describing item
n, and by |Ln| the size of the set Ln. We denote by L =
{Ln}

N
n=1 all items’ label sets. Finally, we denote by 〈f〉q the

expectation of f over some distribution q.

2. MODEL DESCRIPTION
Many MF models strive to optimize some specific objec-

tive function like the root mean squared error (RMSE) [12],
hinge loss [18], or ranking-based objective functions [21].
This is often the best approach in competitions such as the
Netflix Prize [3], where algorithms are evaluated on a single
metric like RMSE. At Xbox, however, we are additionally
interested in gaining a broader understanding of users’ tastes
when watching movies on their Xbox consoles. We therefore
turn to probabilistic generative models which model the data
while striving to explain it.

We assume that user m’s rating of item n is generated by
the linear combination of latent user and item trait vectors.
The latent user and item vectors are denoted by xm ∈ R

D

and yn ∈ R
D respectively, with D being the dimensionality

of the model. We additionally assume that the user and the
item have latent biases, bm ∈ R and bn ∈ R. The odds of a
user liking or disliking an item is modeled by

p(r |x, y, b) = σ
(

x⊤y + b
)r
[

1− σ
(

x⊤y + b
)

]1−r

, (1)

where subscripts m and n are dropped as they are clear



from the context, b denotes the sum of both of the biases
b = bm+ bn, and the function σ denotes the logistic sigmoid
σ(a) = 1/(1 + e−a).

Each item n has a set of feature labels Ln. We believe
a priori that some (but not necessarily all) of an item’s
features k ∈ Ln are informative in determining its latent
vector yn, and their effect is modeled by letting yn depend
on them hierarchically. We therefore assume a latent vector
fk ∈ R

D for each feature label k = 1, . . . ,K, and place a
hierarchical Gaussian prior on each yn with

p(yn|{fk}, Ln, τy) = N

(

yn ;
1

√

|Ln|

∑

k∈Ln

fk, τ
−1
y I

)

,

where τy is a precision parameter. The division by
√

|Ln| en-
sures that the prior variance of p(yn|τy), when marginalized
over {fk}k∈Ln

, does not grow or shrink with |Ln|; namely,
we do not have different degrees of certainty about yn on
the basis of it being tagged with more or less features.

The generative model is shown in Figure 1, and requires
additional priors for the user vectors and for the biases.
We let these be centered Gaussian distributions: p(xm) =
N (xm ; 0, τ−1

x I) and p(bm) = N (bm ; 0, τ−1
ub ) for each user

m, and p(bn) = N (bn ; 0, τ−1
ib ) for each item n. The preci-

sions of the Gaussian distributions are governed by parame-
ters τx, τub, and τib for the user trait vectors and biases, and
the item biases respectively. To infer the various precision
parameters τ , we place a conjugate Gamma hyperprior on
each of τx, τy, τib, τub. For example, for τx we have:

p(τx|a, b) = G(τx; a, b)
def
= ba/Γ(a) · τa−1

x e−bτx .

The rate and shape parameters of the hyperprior were set
to a = b = 0.1, giving a hyperprior on the τ ’s with mean 1
and a variance of 10.

2.1 Embedded Feature Selection
The prior density on each feature vector fk is governed by

its own precision parameter τk. Namely, for each vector fk
we have:

p(fk|τk) = N (fk ; 0, τ
−1
k I) and p(τk|α, β) = G(τk ; α, β) .

There are therefore K precision parameters τk, each takes
its own conjugate Gamma hyperprior G(τk ; α, β).

This particular setting is designed to give raise to a spar-
sity prior on the features that encourages the model to dis-
cern informative features from non-informative ones. When
we marginalize out τk, we obtain the effective prior distribu-
tion for features p(fk|α, β). It is a multivariate t-distribution:

p(fk|α, β) =

∫

p(fk|τk) p(τk|α, β) dτk

=
Γ
(

ν+D
2

)

Γ
(

ν
2

)

(νπ)
D

2 |Σ|
1
2

[

1 +
α

βν
f⊤k fk

]− ν+D

2

, (2)

where theD-dimensional t-distribution has a zero mean, ν =
2α degrees of freedom, and a scale matrix Σ = β

α
I. The

marginalization in (2) is explained in the Appendix.
The multivariate t-distribution is a generalization of the

well known univariate Student’s t-distribution. It serves as
an effective prior on the fk vectors; the effective prior mean
remains zero, and the fk vectors are still regularized based
on their norms f⊤k fk. However, for small degrees of freedom
ν this distribution exhibits very heavy tails (compared to a

f
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Figure 2: Contours of the probability mass of the
effective prior for two feature vectors (f1 and f2):
p(f1, f2|α = 0.01, β = 0.01). For the sake of the visual-
ization, the feature vectors here are one-dimensional
(D = 1). The heavy tails originating from the under-
laying t-distributions are clearly seen along the axes.
As the number of features is higher, this effect re-
sults in a concentration of probability mass along
the corners which encourages sparse solutions.

Gaussian). The density in (2) is isotropic, but with heavy
tails. However, unlike a product of Gaussians, the product
of these densities doesn’t have spherical contours, and the
resulting probability mass is not isotropically spread. Hence,
the product p({fk}|α, β) =

∏K
k=1 p(fk|α, β) favors variables

that are axis-aligned, i.e. where ‖fk‖ is around zero for many
feature indexes k (see Figure 2).

This effect is similar to L1 regularization, albeit on a
Bayesian hierarchical probabilistic model. The rate param-
eter α of the features hyperprior determines the degrees of
freedom of the t-distribution. In MF-EFS, we set α and the
shape parameter β to α = β = 0.01, giving a hyperprior on
the τk’s with mean 1 and variance of 100.

2.2 The Posterior Distribution
We collectively denote the model’s parameters by

θ =
{

{xm, bm}, {yn, bn}, {fk, τk}, τx, τy, τib, τub
}

,

and hyperparameters by H = {a, b, α, β}. The joint density
of an observed dataset D, given the hyperprior parameters
H and item feature sets L is

p(θ,D|L,H) =
∏

rmn∈D

σ
(

x⊤
myn + bm + bn

)rnm
[

1− σ
(

x⊤
myn + bm + bn

)]1−rnm

·
M
∏

m=1

N (xm ; 0, τ−1
x I)N (bm ; 0, τ−1

ub )

·
N
∏

n=1

N

(

yn ;
1

√

|Ln|

∑

k∈Ln

fk, τ
−1
y I

)

N (bn ; 0, τ−1
ib )

·
K
∏

k=1

N (fk ; 0, τ
−1
k I)G(τk ;α, β)

· G (τx; a, b) G (τy; a, b) G (τub; a, b) G (τib; a, b) . (3)



We note that the MF-EFS model presented here can be triv-
ially extended to also incorporate user features, but these are
omitted for clarity.

We now appeal to Bayes’ theorem to infer the posterior
density of θ,

p(θ|D,L,H) =
p(D|θ) p(θ|L,H)

p(D|L,H)
, (4)

A direct computation of this posterior distribution is hard.
Hence, in the following section we approximate p(θ|D,F ,H)
with a surrogate distribution q(θ) from a simpler family.

3. VARIATIONAL INFERENCE
We seek a distribution q(θ) that will minimize the Kullback-

Leibler divergence from the true posterior to q(θ):

DKL

(

q(θ)
∥

∥

∥p(θ|D,L,H)
)

def
=

∫

q(θ) log
q(θ)

p(θ|D,L,H)
dθ .

(5)
This divergence can be rewritten in terms of the model’s log
likelihood and the variational free energy F [q(θ)] (see [4]),

DKL

(

q(θ)
∥

∥

∥
p(θ|D,L,H)

)

+ F [q(θ)] = log p(D|L,H) , (6)

where F [q(θ)]
def
=
∫

q(θ) log p(θ,D|L,H)
q(θ)

dθ.

From the expression in (6) and the non-negativity of the
Kullback-Leibler divergence, we concur two things: we can
minimize (5) by maximizing F [q(θ)] with respect to our
choice of q, and F additionally serves as a lower bound to
the model’s log marginal likelihood.

3.1 Logistic Bound
The joint density in (3) includes Gaussian priors which

are not conjugate with respect to the sigmoid link function
used in our likelihood (1). In order to facilitate approximate
inference, the sigmoids are replaced by a “squared exponen-
tial” form, which is conjugate to a Gaussian prior. Hence we
lower-bound the sigmoids in (3) by employing the logistic or
Jaakkola-Jordan bound [9]. We introduce an additional vari-
ational parameter ξmn on each observation rmn and bound
the sigmoids in (3) as follows (dropping subscripts m and n,

and using h
def
= x⊤y + b):

σ(h)r[1− σ(h)]1−r ≥ erh
[

σ(ξ) e−
1
2
(h+ξ)−λ(ξ)(h2−ξ2)

]

, (7)

where λ(ξ)
def
= 1

2ξ
[σ(ξ)− 1

2
]. Using (7), we substitute the sig-

moid functions in p(θ,D|L,H) to get pξ(θ,D|L,H). Hence,
we now have

log p(D|L,H) ≥ F [q(θ)]

≥ Fξ[q(θ)]
def
=

∫

q(θ) log
pξ(θ,D|L,H)

q(θ)
dθ ,

where Fξ[q(θ)] is our new objective to be maximized. We
note that the above bound now additionally relies on the
variational parameters ξ = {ξmn}, which are adjusted along
with q(θ) to maximize Fξ[q(θ)]. The following section dis-
cusses the approximating family q(θ), and the maximization
of Fξ.

3.2 Optimization Procedure
We estimate each component of x, y, and f , as well as the

biases with Gaussian densities. As an example, q(xmd) =

N (xmd; 〈xmd〉 , var(xmd)). We further approximate the τ ’s
with Gamma densities, and let q(θ) fully factorize with:

q(θ) =

M
∏

m=1

q(bm)

D
∏

d=1

q(xmd) ·
N
∏

n=1

q(bn)

D
∏

d=1

q(ynd)

·
K
∏

k=1

q(τk)
D
∏

d=1

q(fkd) · q(τx) q(τy) q(τub) q(τib) . (8)

One might also choose q(xm) as a full multivariate Gaussian,
instead of a diagonal one; it gives a richer approximating
family, but requires that a D × D covariance be kept in
memory for each user (or item).

Optimization of Fξ proceeds by coordinate ascent in the
function space of the variational distributions. Namely, we
compute functional derivatives ∂Fξ/∂q with respect to each
distribution q in (8). Equating the derivatives to zero, to-
gether with a Lagrange multiplier constraint to make q inte-
grate to one, we get the update steps for each q in (8). We
iteratively update the q’s, where each update increases our
objective Fξ. As Fξ is bounded, the optimization is guaran-
teed to converge. In what follows, we describe these update
steps in terms of the sufficient statistics of each distribution.

3.2.1 Updating q(xmd)

Before describing the update of q(xmd) for d = 1, . . . , D,
an update is given if the factor was a richer, full covariance
Gaussian q̃(xm), instead of a fully factorized one. Equating
∂Fξ/∂q̃(xm) to zero gives a multivariate q̃(xm) with pre-
cision matrix Pm and mean-times-precision vector µmPm

of

Pm =
∑

n∈Ω(m)

2λ(ξmn)
〈

yny
⊤
n

〉

q
+ 〈τu〉 I

µmPm =
∑

n∈Ω(m)

[

rmn −
1

2
− 2λ(ξmn) 〈bm + bn〉q

]

〈yn〉q .

(9)

These define the natural parameters in terms of their suffi-
cient statistics. Note that (9) has no dependence on other
user parameters xm′ , and updating all user parameters is an
embarrassingly parallel computation.

For the fully factorized case, single-variable updates like
(9) would have to be repeatedD times, once for each q(xmd).
This involves D loops over n ∈ Ω(m). Instead, a sim-
pler technique allows us to estimate all q(xmd) in bulk by
using q̃(xm) = N (xm;µm,P−1

m ) in (9) as an intermediate
computation: Each of the q(xmd)’s are recovered from the

minimizer of DKL(
∏D

d=1 q(xmd)‖q̃(xm)). Thus, the sufficient
statistics of q(xmd) based on µm and Pm are

〈xmd〉 = µmd and var(xmd)
−1 = [Pm]dd .

The following sections only present the updates for (interme-
diate) full Gaussian factors, after which the above procedure
can be employed to efficiently find the factorized parameters.

3.2.2 Updating q(ynd)

The natural parameters of q̃(yn), from which each q(ynd)



is recovered, are

Pn =
∑

m∈Π(n)

2λ(ξmn)
〈

xmx⊤
m

〉

q
+ 〈τy〉q I

µnPn =
∑

m∈Π(n)

[

rmn −
1

2
− 2λ(ξmn) 〈bm + bn〉q

]

〈xm〉q

· · ·+
〈τy〉q
√

|Ln|

∑

k∈Ln

〈fk〉q , (10)

where Pn and µnPn indicate its precision matrix and mean-
times-precision vector.

The mean vector therefore has two contributions, statis-
tics from the relevant user vectors xm, and a sum of the rel-
evant feature vectors fk. Even if Π(n) is empty, cold items
with no usage still have non-trivial solutions based on their
features. Again, updating all the item vectors is an embar-
rassingly parallel operation.

3.2.3 Updating q(fkd)

The natural parameters of q̃(fk), from which each q(fkd)
is recovered, are

Pk =



〈τk〉q + 〈τy〉q
∑

n∈Yk

1

|Ln|



 I

µkPk = 〈τy〉
∑

n∈Yk





1
√

|Ln|
〈yn〉q −

1

|Ln|

∑

i∈Ln/k

〈fi〉q



 ,

where Pk and µkPk again indicate its precision matrix and
mean-times-precision vector. Here, Yk denotes the set of all
items having feature k, and Ln/k are all the features in Ln

except k.

3.2.4 Updating q(bm) and q(bn)

Both q(bm) and q(bn) are Gaussian distributions, and as
their update steps are symmetric, only the sufficient statis-
tics of q(bm) are given. They are

σ−2
bm

=
∑

n∈Ω(m)

2λ(ξmn) + 〈τub〉q

µbm

σ2
bm

=
∑

n∈Ω(m)

[

rmn −
1

2
− 2λ(ξmn)

〈

x⊤
myn + bn

〉

q

]

,

with µbm and σ2
bm denoting the mean and variance of q(bm).

3.2.5 Updating q(τk), q(τx), q(τy), q(τub), q(τib)
The precision hyperpriors are all approximated with Gamma

distributions. For the sake of brevity only the update step
of q(τk) = G(τk;φk, ϕk) is presented. Its shape parameter is
φk = D

2
+ α, and its rate parameter is ϕk = 1

2

〈

f⊤k fk
〉

q
+ β.

3.2.6 Finding ξmn

The updates in (9) and (10) rely on the variational pa-
rameters ξmn. The current maximum of Fξ with respect to
them are computed and discarded as needed, with

ξmn =
〈

(x⊤
myn + bm + bn)

2
〉1/2

q
.

We refer the reader to [4, 9] for a deeper discussion of the
Jaakkola-Jordan bound.

4. RESULTS
Unlike more familiar algorithms that compute a point es-

timate of some objective function, the advantage of Varia-
tional Bayesian inference is in its posterior approximation,
which aims to approximate the whole posterior density. In
this framework, when making predictions we take an expec-
tation over all possible parameter values which often leads
to better overall accuracy. This is especially true when not
aiming to optimize any one single metric (such as root mean
squared error), or when the metric is too complex to be op-
timized directly. The posterior distribution models param-
eter uncertainty, which makes Variational Bayes less prone
to under-fitting and over-fitting without the need for an ex-
haustive cross-validation process.

When predicting whether a user will like an item, we av-
erage over the posterior density with p(r = 1|D,L,H) =
∫

p(r = 1|θ) p(θ|D,L,H) dθ. This is made tractable by ap-
proximating the true marginal density with an average over
q(θ), where p(r = 1|D,L,H) ≈

∫

p(r = 1|θ) q(θ) dθ. In
other words,

p(rmn = 1|D,L,H) ≈
〈

σ(x⊤
myn + bm + bn)

〉

q

≈

∫

σ(h)N (h ; µh, σ
2
h) dh , (11)

where the random variable h
def
= x⊤

myn + bm + bn is approxi-
mated with a Gaussian based on its first two moments under
q, i.e.

µh
def
=
〈

x⊤
myn + bm + bn

〉

q

σ2
h

def
=
〈

(x⊤
myn + bm + bn − µh)

2
〉

q
.

Finally, the logistic Gaussian integral in (11) is approxi-
mated with

∫

σ(h)N (h ; µh, σ
2
h) dh ≈ σ

(

µh

/

√

1 + πσ2
h/8
)

,

which follows from MacKay [14].

4.1 Datasets
We evaluate using two different datasets. The first is a

sample taken from Xbox movies2 containing approximately
100 million binary ratings to more than 15K movies made
by 5.8 million users. The binary ratings come from a pro-
cessed dataset based on a mixture of explicit and implicit
user inputs such as movies purchases, explicit ratings, the
not interested button, etc. Each movie is associated with
a list of 20-30 labels (features) from a dictionary of 1,000
labels. These labels describe movie attributes such as genre,
plot, time-period, praise, etc.

The second dataset is based on the publicly available Movie-
Lens 10M dataset3. We used it to construct a binary like
/ dislike dataset as follows: First, we took only positive
ratings of 4 stars or higher. After filtering we were left
with 5,005,684 ratings by 69,878 users to 10,677 movies. We
than added fictitious negative ratings by sampling items and
adding them to the dataset. For every user we sampled the
same number of negative ratings as the number of positive

2http://marketplace.xbox.com/en-US/Movies
3http://www.grouplens.org/node/73

http://marketplace.xbox.com/en-US/Movies
http://www.grouplens.org/node/73


SGD NoFeatures MF-EFS

Xbox Movies 0.0941 0.0884 0.0881

MovieLens 0.153 0.147 0.139

Table 1: Mean Percentile Rank (MPR) of the pro-
posed model with features (MF-EFS) and without
features (NoFeatures) against a baseline trained with
Stochastic Gradient Descent (SGD).

ratings she already had. The items for the negative rat-
ings were sampled in proportion to their popularity. This
dataset construction process follows from KDD Cup’11 [7].
The popularity sampling was chosen to discourage trivial
solutions where biases are learned instead of personalization
patterns. The movies in the MovieLens 10M dataset are as-
sociated with 3-5 labels from a dictionary of 20 genre labels.

4.2 Evaluation
In both datasets, we created test-sets by randomly select-

ing and hiding 10% of the positive ratings. These ratings
come from items the user liked or consumed. We measure
performance in terms of Mean Percentile Rank (MPR), a
common metric in studies of implicit feedback datasets [8,
20]. For every user item pair (m,n) in the test-set, we rank
all items not in m’s history and compute the percentile rank
PRmn of item n using this ranking:

PRmn
def
=

1

N − |Ω(m)|

∑

n′:n′ /∈Ω(m)

I

[

pmn < pmn′

]

,

where I[·] is the indicator function, Ω(m) are the items in
m’s history, and pmn is the probability that user m likes
item n according to (11). The MPR metric is computed by
averaging the percentile ranks (PRmn) over all test exam-
ples. Accordingly, MPR values closer to zero indicate better
rankings.

We compared against a regression MF baseline utilizing
Stochastic Gradient Descent (SGD) such as in [12]. In the
following analysis, we dub this baseline SGD. In order to iso-
late the contribution of the features in MF-EFS, we trained
two versions of our model – one with ratings and features
data and one with ratings only (without the features). We
dubbed these two variants MF-EFS and NoFeatures respec-
tively. Effectively, the NoFeatures variant amounts to a
simple MF model similar to the SGD model but with Varia-
tional Bayes inference instead of stochastic gradient descent.
All the models are trained with D = 50.

Table 1 summarizes the results of our evaluation. On
both datasets MF-EFS performed best. Notably, the two
variants of our algorithm are better than the SGD baseline.
The difference between the NoFeatures model and the SGD
model is attributed to the Variational Bayes inference which
is more accurate than the point estimates of the SGD algo-
rithm. The difference between MF-EFS and NoFeatures is
attributed to the ability of the proposed model to utilize the
informative content of the features.

In Figure 3, we further investigate these results by plot-
ting MPR vs. the item support (the number of ratings per
item). The advantage of MF-EFS over NoFeatures is clearly
evident for items with low item-support (“cold-items”). We
attribute this advantage to the features data that is utilized
only in MF-EFS. The two variants seem to perform equally
on items with higher support.
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Figure 4: Item support distribution of Xbox Movies
and MovieLens datasets. The Xbox Movies dataset
is larger and its distribution is more skewed.

The Xbox Movies dataset is much larger than the Movie-
Lens dataset and the item support distribution is more skewed
(see Figure 4). It is therefore more susceptible to under-
fitting and over-fitting by the SGD model. As discussed
above, Variational Bayes algorithms are more robust to these
effects. This explains the relative advantage of both variants
of our model over SGD in the Xbox Movies dataset for items
with high support. It also explains the relative advantage of
NoFeatures over SGD for cold items in that dataset.

4.3 Feature Selection
In order to investigate the feature selection mechanism of

MF-EFS we trained another variant of the model in which
the traits’ precision parameters (the τk’s) are held fixed and
not updated. This model therefore lacks the sparsity encour-
aging property of the multivariate t-distribution in MF-EFS.
Instead it employs simple Gaussian priors on the feature vec-
tors which are the probabilistic equivalent to the common L2

regularization. In the following, we dub this variant Gaus-
sianPrior.

As explained in Section 2.1, the sparsity constraint is
held on the feature vector norms. Figure 5, depicts the
histograms of the mean feature-vector norms in the Xbox
Movies dataset. The sparsity inMF-EFS compared toGaus-
sianPrior is eminent in the general shift of the histogram
towards mean zero norms, as well as in the larger number of
high norm features (the two rightmost bins).

Figure 6 depicts an insightful visualization of the mean
feature vectors in an MF-EFS model trained with dimen-
sionality D = 2. A small number of features have a high
norm vector, while the vast majority of the features have
near zero norms. This is a direct result of the feature se-
lection mechanism of our algorithm. The high norm fea-
tures are the “informative” features as found by MF-EFS.
We added text labels to these features. The most informa-
tive feature according to the algorithm is the label Kids.
This is expected, as this label encodes clear information on
the audience that may like the movie.

The vectors in an MF model span a latent space in which
the angular direction of a vector encodes information on the
“taste”. Item vectors and feature vectors in the same direc-
tion belong to items that fit a similar type of users. Indeed,
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Figure 3: Mean Percentile Rank (MPR) vs. Item Support (lower is better). The contribution of the features
in MF-EFS is clearly evident in improving cold-items recommendations.

we see in the same direction of the Kids vector other vectors
that indicate children’s content, e.g. Pets, Semi-Fantastic,
Adventures, etc. Interestingly, in the opposite direction we
find features that indicate adult content such as Profanity,
Drugs/Alcohol, Erotic, etc. We therefore identify a mean-
ingful axis in this latent space which roughly spans between
the upper right corner and lower left corner – the upper
right direction indicates children movies and the opposite
direction indicates adult movies.

Another meaningful axis in Figure 6 roughly spans or-
thogonal to the first one – between the lower right corner
and towards the upper left corner. The lower right direction
indicates more “sophisticated” taste with features such as
Foreign, Experimental and New Wave. To the opposite of
these features we see features belonging to the Horror genre
such as Horror, Scary and Serial Killer. The fact that these
two groups are placed opposite to each other indicates a neg-
ative correlation between the audiences of these two types
of movies.

5. CONCLUSION
We presented a novel probabilistic Matrix Factorization

model with Embedded Feature Selection (MF-EFS) for Xbox
Movies. The model utilizes items’ meta-data in the form of
label features to enhance accuracy in the long tail. We as-
sume that only a subset of these features is informative with
regard to collaborative-filtering. Our model therefore per-
forms embedded feature selection that ignores non-informative
features while fully utilizing informative features. We com-
pared against a traditional baseline trained by minimizing
root mean squared error and demonstrate superior results
for Xbox Movies as well as on the publicly available Mevie-
Lens dataset. Finally, we note that MF-EFS can be trivially
extended to incorporate also user features.
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Figure 5: A histogram of the feature-vector norms.
The x-axis depicts the mean feature vector norm,
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aging effect of the MF-EFS model over the Gaus-

sianPrior model is eminent in the general shift to-
wards mean zero norms, as well as in the larger num-
ber of high norm features (the two rightmost bins).
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[21] G. Takács and D. Tikk. Alternating least squares for
personalized ranking. In Proceedings of the sixth ACM
conference on Recommender systems, RecSys ’12,
pages 83–90, 2012.

[22] C. Wang and D. M. Blei. Collaborative topic modeling
for recommending scientific articles. In Proceedings of
the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’11, pages
448–456, 2011.

APPENDIX
We marginalized over τk and get p(fk|α, β) as follows:

p(fk|α, β) =

∫

p(fk|τk)p(τk|α, β)dτk

=

∫

( τk
2π

)D

2
exp

{

−
τk
2
f⊤k fk

}

·
1

Γ [α]
βατα−1

k exp {−βτk}dτk

=
βα

Γ [α] (2π)
D

2

∫

(

τk
)D

2
+α−1

exp

{

−

(

f⊤k fk
2

+ β

)

τk

}

dτk.

We employ the substitution t =
(

f
⊤

k
fk

2
+ β

)

τk to get:

p(fk|α, β) =
βα

Γ [α] (2π)
D

2

(

f
⊤

k
fk

2
+ β

)
D

2
+α

∫

t
D

2
+α−1e−tdt

=
βα Γ

[

D
2
+ α

]

Γ [α] (2π)
D

2

[

f⊤k fk
2

+ β

]−(D

2
+α)

=
Γ
[

ν+D
2

]

Γ
[

ν
2

]

(νπ)
D

2 |Σ|
1
2

[

1 +
1

ν
(fk − µ)⊤ Σ−1 (fk − µ)

]− ν+D

2

.

where

ν = 2α Σ = I
β

α
µ = 0.

Hence, p(fk|α, β) = Multi-tν(fk|µ,Σ) is a D dimensional
t-distribution with location vector µ, scale matrix Σ and ν
degrees of freedom.
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