
Selecting Content-Based Features for Collaborative
Filtering Recommenders

Royi Ronen, Noam Koenigstein, Elad Ziklik and Nir Nice
Microsoft Israel

{royir,noamko,eladz,nicen}@microsoft.com

ABSTRACT
We study the problem of scoring and selecting content-based
features for a collaborative filtering (CF) recommender sys-
tem. Content-based features play a central role in mitigat-
ing the “cold start” problem in commercial recommenders.
They are also useful in other related tasks, such as recom-
mendation explanation and visualization. However, tradi-
tional feature selection methods do not generalize well to
recommender systems. As a result, commercial systems typ-
ically use manually crafted and selected features. This work
presents a framework for automated selection of informa-
tive content-based features, that is independent of the type
of recommender system or the type of features. We evalu-
ate on recommenders from different domains: books, movies
and smart-phone apps, and show effective results on each.
In addition, we show how to use the proposed methods to
generate meaningful features from text.

Categories and Subject Descriptors
H.2.8 [Database Management]: Data Applications - Data
Mining.

Keywords
Feature Selection, Recommender Systems, Collaborative Fil-
tering, Content Based, Cold Start

1. INTRODUCTION
Collaborative Filtering (CF) recommender systems have

become an essential component in many in e-commerce sites
and digital markets such as Amazon, Ebay and the Xbox
Marketplace [8, 12, 15]. CF algorithms are typically fa-
vored over content-based algorithms [11] because of their
overall higher accuracy in predicting common purchase pat-
terns. However, by their nature, CF algorithms face chal-
lenges in modeling and recommending items with little or
no usage (the “cold-start” problem [16]). Items meta-data
in the form of content-based features, has been used to al-
leviate the cold-start problem and improve accuracy [1, 3,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
RecSys’13, October 12–16, 2013, Hong Kong, China.
ACM 978-1-4503-2409-0/13/10.
http://dx.doi.org/10.1145/2507157.2508221.

4, 5]. Features are also useful for providing explanations to
recommendations [17] and for visualization [7].

This work studies the problem of evaluating the quality
of meta-data features. We present an algorithmic frame-
work which is independent of the specific recommendation
algorithm for which the selection is made. Instead, the rec-
ommendation algorithm and other parameters are pluggable
variables. Two types of selection are discussed: one for scor-
ing meta-data attributes, and another for scoring meta-data
labels (to be defined later on). Both have been success-
fully used to enhance recommendations in the Xbox mar-
ketplace, serving recommendations to more then 50 million
users worldwide [8, 12, 14, 13].

We evaluate our methods and show their high effectiveness
by experimenting with books, movies and data from win-
dows Phone 8 smart-phone apps. In addition, we show how
to use the framework to automatically generate informative
labels from item descriptions and present the extracted la-
bels for a qualitative evaluation.

1.1 Content-Based Features
Item catalogs in e-commerce marketplaces typically in-

clude meta-data features in the form of attributes. The at-
tributes may be numerical, categorical, ordinal, binary, etc.
For example, some common attributes are price, brand and
is-on-sale. Another common type of features are labels, or
tags, assigned to items by consumers, experts, or extracted
from text by an algorithm. A label is typically a word, an
n-gram, or a short phrase describing the item. Labels follow
the ‘bag-of-words’ model. They form a closed dictionary,
and every label may or may not be assigned to any item.
Some examples of movie labels are: location-usa, horror,
kids and funny.

In most catalogs there exists a subset of features that is
highly informative with regard to the recommendation task
at hand. However, many other features are often redun-
dant or irrelevant with regard to CF. For example, in the
context of books recommendations, author is informative,
while cover-color is not. Despite a substantial body of work
on feature selection for Data Mining algorithms, for most
algorithms it is unclear how to extend them to the case of a
recommendation system.

1.2 On Feature Selection
We briefly survey the three main categories of feature se-

lection algorithms:
Wrapper methods evaluate different subsets of features

by training a model for each subset and then evaluating
each subset’s contribution on a validation dataset. As the

number of all possible subsets is factorial in the number
of features, different heuristics are used to choose “promis-
ing” subsets (forward-selection, backward-elimination, tree-
induction, etc.). Wrapper methods are independent of the
prediction algorithm.

Filter methods are typically based on heuristic measures,
such as Mutual Information or Pearson Correlation, to score
features based on their information contents w.r.t. the pre-
diction task. Similar to wrapper methods, filter methods are
also independent of the algorithm in use. However, they do
not require training many models and therefore scale well
for large datasets. Yet, filter methods can not be naturally
extended to recommender systems, in which the prediction
target varies and depends both on the user’s history and on
the item under consideration. This work proposes a frame-
work and algorithms to address the above difficulties.

Embedded methods are a family of algorithms in which
the feature selection is performed in the course of the train-
ing phase. Unlike wrapper methods, they are not based on
cross-validation and therefore scale with the size of the data.
However, since the feature selection is an inherent property
of the algorithm, an embedded method is tightly coupled
with the specific model: If the recommendation algorithm
is replaced, features selection needs to be revisited (e.g., in
the context of recommendation systems see [9]).

2. FEATURE SCORING ALGORITHMS
As explained above, we distinct between two types of item

features: attributes and labels. For attributes, we denote by
s.a the value that item s has for the attribute a. For labels,
we denote by s.L the set of labels associated with the item
s (“bag-of-words”).

Our algorithms depend on a pluggable features similarity
function sim(·, ·) between two attribute values or between
two labels. The function sim(·, ·) may be a content-based
function that depends on features values. Alternatively,
sim(·, ·) can be a CF similarity function based on users who
purchased items with features f1 and f2. An example of
a simple content-based similarity is sim(f1, f2) = δ(f1, f2)
which equals 1 if f1 = f2 and 0 otherwise. An example of a
CF similarity function is the cosine similarity based on the
users of items with f1 and f2

We denote by Hu = {hu1, hu2, . . . , hun} the set of n
items in user u’s history. The set Hu is used by an implicit-
feedback recommender to produce a set of k recommended
items denoted by Rk(Hu) = {ru1, ru2, . . . , ruk}. For the
explicit-feedback case, Hu is also associated with numeric
ratings.

The recommendation algorithm, Rk(·), is also pluggable
to the framework. Different applications may benefit from
different Rk(·)’s and sim(·, ·)’s. In Section 3, we discuss
some of the concrete similarity measures and the recom-
mender system we use.

2.1 Algorithms
We perform feature selection by computing a relevance

score for each feature and then selecting the highest-scoring
(i.e., most informative) features. Algorithm 1 and Algo-
rithm 2 describe our algorithms for computing a relevance
score for attributes and labels, respectively. Both algorithms
are based on the ratio between two variables b1 and b2: b1
is proportional to the similarity of the feature under con-
sideration w.r.t. relevant items according to Rk(·). b2 is

Algorithm 1 ScoreAttribute(Attribute a)

Take a sample of n seed user histories {H1, H2, . . . , Hn};
for each user history Hu do

Compute k recommended items Rk(Hu) =
{ru1, ru2, . . . , ruk};
for each pair (hui, ruj) s.t. hui ∈ Hu, ruj ∈ Rk(Hu) do

b1 = b1 + sim(hui.a, ruj .a);
Pick a random item rrand;
b2 = b2 + sim(hui.a, rrand.a);

end for
end for
return b1/b2;

Algorithm 2 ScoreLabel(Label l)

Take a sample of n seed user histories {H1, H2, . . . , Hn};
for each user history Hu do

Compute k recommended items Rk(Hu) =
{ru1, ru2, . . . , ruk};
for each pair (hui, ruj) s.t. hui ∈ Hu, ruj ∈ Rk(Hu) do

Let l1 be the label in ruj .L closest to l according to
sim(·, ·);
b1 = b1 + sim(l, l1);
Pick a random item rrand;
Let l2 be the label in rrand closest to l according to
sim(·, ·);
b2 = b2 + sim(l, l2);

end for
end for
return b1/b2;

Figure 1: Computing attribute and label scores

a normalizer which is proportional to the similarity of the
feature under consideration w.r.t. random items. The ratio
b1/b2 measures the normalized relevance of the feature with
regard to recommended items.

2.2 Generalizing Lift
Interestingly, our methods can be seen as a generaliza-

tion of the lift measure commonly used outside the con-
text of recommendation systems. For the particular case
where sim(v1, v2) = δ(v1, v2), the parameter b1 counts co-
occurrences of the feature in user histories and in their rel-
evant recommended items. The parameter b2 counts co-
occurrences of the feature in user histories and in random
items. Let E1 be the event where a recommended item r
is a “good” recommendation to a user with history Hu (i.e.,
appears in the top-k recommendations). Let E2 be the event
where a recommended item r, not necessarily“good”, has the
same feature as an item in Hu. It can be easily shown that
under this particular settings, ranking according to b1/b2
coincides with the empirical lift(E1 ⇒ E2):

lift(E1 ⇒ E2)
def
=
Pr(E2|E1)

Pr(E2)
=
b1
b2
. (1)

3. IMPLEMENTATION AND EVALUATION
Feature scoring for recommendation systems is not well

studied. We thus evaluate the feature scoring algorithm us-
ing a novel cold item representation task for Matrix Factor-
ization (MF) models. MF models represent items and users
by trait vectors in a low dimensional latent space. The in-
ner product between a user vector and an item vector is

Author Publisher Year of Publication
Score 3.4 1.67 1.15
RMSE 0.98 1.72 2.19

Table 1: Reconstruction results for the books
dataset.

proportional to the affinity between the user and the item
[10]. We perform our evaluation as follows: After training a
MF model we iteratively remove a random item vector from
the model and attempt to reconstruct its trait vector based
on other item vectors having a similar features (labels or
attribute values). We repeat this reconstruction process for
N items, each time reconstructing a different item vector.

Formally, let qi ∈ RD be an item vector of a removed
item i from a trained MF model with dimensionality D. We
measure the ability of each single feature f to reconstruct qi
based on other items which are similar to i according to the
feature f . For each test item i, we find a set of items Sf (i)
whose f values are similar to that of item i’s value for f .
We then compute a reconstructed vector q̂fi for i according
to Sf (i) as follows:

q̂fi =
1

|Sf (i)|
∑

j∈Sf (i)

qj . (2)

Finally, we measure the quality of a reconstruction according
to the Root Mean Squared Error (RMSE) and score the
features quality by averaging all reconstructed item vectors:

RMSE(f) =

√√√√ 1

N

N∑
i=1

||qi − q̂fi ||2. (3)

where N is the number of reconstructed vectors and || · ||2
denotes the L2 norm.

This reconstruction process is designed to cope with the
cold-start problem for items. When a new item i is intro-
duced into the catalog, we wish to construct a trait vector
in order to integrate i into an existing model even before
having any usage data for i. This process is successfully
used in the Xbox movies recommender. We note that while
this evaluation process is specific to the cold-start repre-
sentation problem for items in a MF model, the presented
feature scoring framework is general to any task and any
recommendation algorithm.

3.1 Results
We evaluate with two datasets: The book-crossing dataset

[18] and a dataset from the Xbox Movies recommender (smart-
phone apps are considered in Section 4). As explained, we
are interested in implicit-feedback. We use the algorithm of
[12] to learn trait vectors for items, as well as for ranking
recommended items in Algorithms 1 and 2.
Books: Each book in [18] is associated with three attributes:
author, publisher and year. For scoring attributes, we choose
sim(·, ·) to be the cosine similarity between attribute values.
For example, for author, sim(v1, v2) is the cosine similarity
on users who read author v1 and author v2. We reconstruct a
sample of 500 books based on each of these attributes. Table
1 summarizes the reconstruction results. As intuitively ex-
pected, author has the highest score, followed by publisher,
and then year. RMSE results coincide with these scores (i.e.,
higher RMSE for low scores).

2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

Audience

Humor
Style

Mood

Attitudes

Plot

Time-Period Place

Look

Based on

Attribute score

R
M

S
E

y = -0.135x + 0.307

Figure 2: Xbox movies attributes vs. RMSE

Movies: Movies in the Xbox movies dataset are associated
with labels. Each label is associated with a category, e.g.,
Audience, Mood, Plot. Every movie in the catalog has zero
or more labels from each category. The Audience category
has labels such as Kids, Girls Night and Family ; The Look
category has labels such as 3D, Black and White and Ani-
mation; The Time-Period category has labels indicating the
time in which the plot takes place. We use this dataset for
evaluating both attribute and label ranking as follows:
Movies Attributes. We treat each of the label categories
as a distinct attribute, and the unordered set of labels which
belong to this category as the attribute value. Here we de-
fined sim(v1, v2) to be Jaccard similarity on labels belonging
to movies v1 and v2. We then reconstruct a sample of 1,500
movies, and compute RMSE for each category. Figure 2
depicts the RMSE results vs. the attribute scores. As ex-
pected, categories like Audience and Look were found to be
more informative than categories like Time-Period. Notice
the negative correlation between the scores and RMSE.
Movies Labels. In this experiment, we evaluate our la-
bel scoring algorithm. Our experience shows that different
labels from the same category may have a different infor-
mative value. For example, the Place category is in general
non-informative, as for most movies it simply take the la-
bel USA. Nevertheless, for a small subset of movies, this
category carries a more informative label such as Ghetto
which highly predicts whom might watch the movie. Hence,
we evaluate labels separately, ignoring categories. Here, we
used sim(i, j) = δ(i, j). Figure 3 depicts the RMSE results
vs. the label scores. Again, we see a clear trend line indicat-
ing a negative correlation between the scores and RMSE.

4. GENERATING FEATURES
Crafting a list of descriptive features and assigning them

to catalog items is a labor-intensive process, typically per-
formed manually by content specialists. Next, we demon-
strate how to use the presented framework to automatically
generate (and select) label features extracted from text de-
scriptions of items. We model text descriptions using the

1 2 3 4 5 6 7
0.6

0.7

0.8

0.9

1

1.1

1.2

Label score

R
M

S
E

y = -0.053x + 1.143

Figure 3: Xbox movies - labels vs. RMSE

Rank Label feature Score

1 enemy 2.342
2 ringtone 2.331
3 weapon 2.216
4 girl 2.191
5 youtube 2.183
6 child 2.182
7 kid 2.102
8 music 2.092
9 video 2.092
10 ball 2.086
· · · labels 11 through 1330 · · ·
1331 version 1.158
1332 add 1.153
1333 time 1.147
1334 simple 1.147
1335 app 1.113

Table 2: Ranked labels from apps descriptions

binary bag of words model, and perform a simple filtering
process, in which we remove stop words, words with very
high inverse-document frequency, and words with very low
frequency [2]. The remaining terms are normalized with a
stemmer. We treat each word as a label and perform feature
selection using Algorithm 2.

We present a ranked list labels from Windows Phone 8
apps descriptions1. After filtering, a total of 1335 labels
were scored using Algorithm 2 with sim(f1, f2) = δ(f1, f2)
and Rk(·) from [12]. Table 4 presents the 10 top ranking
and the 5 low ranking labels. Observe that high ranking
labels describe apps genres (music, video, and ball, which
indicates a game) and demographic features (kid, girl), that
are naturally informative for CF. Labels such as app, version
and time, that clearly not informative, are ranked low.

1Avail. on http://www.windowsphone.com/en-us/store

5. CONCLUSIONS
Feature selection for recommendation systems is a rela-

tively new field. This paper presents a generalized frame-
work for selecting informative features for CF. The frame-
work is successfully utilized to enhance recommendation in
the Xbox Marketplace. We hope this work will inspire future
research on feature selection for recommendation systems.

6. REFERENCES
[1] Fab: content-based, collaborative recommendation. M.

Balabanovic and Y. Shoham. Comm. ACM, 1997.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern
Information Retrieval, 2011.

[3] Hybrid Recommender Systems: Survey and
Experiments. Robin D. Burke. in User Model.
User-Adapt. Interact.

[4] Combining content-based and collaborative filters in
an online newspaper. M. Claypool and A. Gokhale, et
al. Recommender Systems Workshop, 1999.

[5] Yahoo! Music Recommendations: Modeling Music
Ratings with Temporal Dynamics and Item Taxonomy.
G. Dror, N. Koenigstein, Y. Koren. RecSys 2011.

[6] The Yahoo! Music Dataset and KDD-Cup’11. G.
Dror, N. Koenigstein, Y. Koren, M. Weimer. Journal
Of Machine Learning Research, 2012.

[7] Map Based Visualization of Product Catalogs. M.
Kagie, M. van Wezel and P.J.F. Groenen.
Recommender Systems Handbook, 2011.

[8] The Xbox Recommender System. N. Koenigstein, N.
Nice, U. Paquet, N. Schleyen. In RecSys 2012.

[9] Xbox Movies Recommendations: Variational Bayes
Matrix Factorization with Embedded Feature
Selection. N. Koenigstein, U. Paquet. In RecSys 2013.

[10] Matrix Factorization Techniques for Recommender
Systems. Y. Koren, R. M. Bell, and C. Volinsky. IEEE
Computer, 2009.

[11] Content-based Recommender Systems: State of the
Art and Trends. P. Lops, M. de Gemmis, G. Semeraro.
Recommender Systems Handbook, 2011.

[12] One-class Collaborative Filtering with Random
Graphs. U. Paquet, N. Koenigstein. In WWW 2013,
999–1008.

[13] Sage - Recommender Engine as a Cloud Service. R.
Ronen, N. Koenigstein, E. Ziklik, M. Sitruk, R. Yaari,
N. Haiby-Weiss. In RecSys 2013.

[14] Automatic Feature Selection for Recommender
Systems. R. Ronen, N. Koenigstein, E. Ziklik, N. Nice.
Microsoft Patent 339085.01, 2013.

[15] J. B. Schafer, J. A. Konstan, J. Riedl. E-Commerce
Recommendation Applications. Data Min. Knowl.
Discov. 5(1/2): 115-153 (2001).

[16] Methods and metrics for cold-start recommendations.
A. I. Schein, A. Popescul, L. H. Ungar and D. M.
Pennock. SIGIR 2002.

[17] Designing and Evaluating Explanations for
Recommender Systems. N. Tintarev and J. Masthoff.
Recommender Systems Handbook, 2011.

[18] Improving recommendation lists through topic
diversification. C. Ziegler, S. M. McNee, J. A.
Konstan, G. Lausen. WWW 2005.

http://www.windowsphone.com/en-us/store

	Introduction
	Content-Based Features
	On Feature Selection

	Feature Scoring Algorithms
	Algorithms
	Generalizing Lift

	Implementation and Evaluation
	Results

	Generating Features
	Conclusions
	References

