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ABSTRACT
The theme of the the KDD cup 2011 challenge was to iden-
tify user tastes in music by leveraging the actual Yahoo!
Music dataset. Two datasets were sampled for the raw data:
The larger dataset contained 262,810,175 ratings of 624,961
music items by 1,000,990 users was created for Track1 and
and a smaller dataset with 62,551,438 ratings of 296,111 mu-
sic items by 249,012 was created for Track2. A distinctive
feature of the datasets is that there are four types of musi-
cal items: tracks, albums, artists, and genres, forming a four
level hierarchy.

The challenge started on March 15, 2011 and ended on
June 30, 2011 and attracted 2389 participants, 2100 of which
were active by the end of the competition. The popularity
of the challenge is related to the fact that learning a large
scale recommender systems is a generic problem, highly rel-
evant to the industry. In addition, The competition drew
interest by introducing a number of scientific and techni-
cal challenges including dataset size, hierarchical structure
of items, high resolution timestamps of ratings, and a non-
conventional ranking-based task.

1. INTRODUCTION
People have been fascinated by music since the dawn of

humanity. A wide variety of music genres and styles has
evolved, reflecting diversity in personalities, cultures and age
groups. It comes as no surprise that human tastes in music
are remarkably diverse, as nicely exhibited by the famous
quotation: “We don’t like their sound, and guitar music is
on the way out” (Decca Recording Co. rejecting the Beatles,
1962).

Yahoo! Music has amassed billions of user ratings for
musical pieces. When properly analyzed, the raw ratings
encode information on how songs are grouped, which hid-
den patterns link various albums, which artists complement
each other, how the popularity of songs, albums and artists
vary over time and above all, which songs users would like
to listen to. Such an analysis introduces new scientific chal-
lenges. We have created a large scale music dataset and
challenged the research world to model it through the KDD
Cup 2011 contest1. The contest released over 250 million
ratings performed by over 1 million anonymized users. The
ratings are given to different types of items: tracks, albums,
artists, genres, all tied together within a known taxonomy.
Thousands of teams participated in the contest, trying to
crack the unique properties of the dataset.

2. THE YAHOO! MUSIC DATASET
∗This research was done while at Yahoo! Labs.
1kddcup.yahoo.com

2.1 Yahoo! Music Radio service
Yahoo! Music2 was one of the first providers of personal

internet music radio stations, with a database of hundreds
of thousands of songs. As a pioneer in online music stream-
ing, it influenced many subsequent services. Yahoo! Music
used to be the top ranked online music site in terms of audi-
ence reach and total time spent. The service was free with
some commercial advertising in between songs that could be
removed by upgrading to a premium account. Users could
rate songs, artists, albums and even genres on a 5 star sys-
tem, or using a slider interface. These ratings were used by
Yahoo! Music to generate recommendations that match the
user’s taste, based on either the taxonomy of items or on
recommendations of other users with similar musical tastes.

2.2 Ratings dataset
The KDD-Cup contest released two datasets based on Ya-

hoo! Music ratings. The larger dataset was created for
Track1 of the contest, and a smaller dataset was created for
Track2. The two datasets share similar properties, whereas
the Track2 dataset omits dates and times, and refers to a
smaller user population. In addition, the distinctive na-
ture of the tasks dictates using different kinds of test sets.
In this section we will elaborate on the Track 1 dataset,
which is the richer and larger of the two.3 The dataset
comprises 262,810,175 ratings of 624,961 music items by
1,000,990 users collected during 1999-2010. The ratings
include one-minute resolution timestamps, allowing refined
temporal analysis. Each item and each user have at least
20 ratings in the whole dataset. The available ratings were
split into train, validation and test sets, such that the last
6 ratings of each user were placed in the test set and the
preceding 4 ratings were used in the validation set. The
train set consists of all earlier ratings (at least 10). The to-
tal sizes of the train, validation and test sets are therefore
252,800,275, 4,003,960, and 6,005,940, respectively. Figure
1 depicts the weekly number of ratings and the weekly mean
ratings score vs. the number of weeks that passed since the
launch of the service on 1999.

The ratings are integers between 0 and 100. Figure 2 de-
picts the distribution of ratings in the train and validation
sets using a logarithmic vertical scale. The vast majority
of the ratings are multiples of ten, and only a minuscule
fraction are not. This mixture reflects the fact that several
interfaces (“widgets”) were used to rate the items, and dif-
ferent users had different rating “strategies”. While differ-
ent widgets have different appearances, scores have always
been stored internally at a common 0–100 scale. We possess
only the 0–100 internal representation, and do not know the
exact widget used for creating each rating. Still, the popu-

2new.music.yahoo.com
3More details on the Track2 dataset are given in Sec. 3.
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Figure 1: Yahoo! Music dataset: number of ratings
and mean rating score vs. time in weeks
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Figure 2: Ratings distribution

larity of a widget used to enter ratings at a 1-to-5 star scale
is reflected by the dominance of the peaks at 0, 30, 50, 70
and 90 into which star ratings were translated. Notice that
the distributions of ratings of the train and validation sets
differ significantly on lower ratings. This is caused by the
fact that the validation set has exactly 4 ratings per user,
thus significantly down-sampling the heavy raters who are
responsible to many of the lower ratings (see also Figure 5
and related text).

An interesting aspect of the data is the fact that widgets
have been altered throughout the years. Figure 3 depicts
the relative frequency of each of the three types of ratings.
In the first group are the ratings corresponding to the five
dominant peaks of Fig. 2 (0, 30, 50, 70 and 90). The second
group includes the remaining peaks (10, 20, 40, 60, 80 and
100), and the third group contains the remaining ratings
(those not divisible by 10). Abrupt changes in the relative
frequencies of the three groups may be clearly observed on
the 125-th week as well as on the 225-th week. These dates
are also associated with a dramatic change in mean rating,
as can be observed in Fig. 1.

We calculated the mean rating of each user, as well as
the mean rating of each item. Figure 4 depicts these two
distributions. The location of the modes (at 89 and 50 re-
spectively), as well as the variances of the two distributions
are quite distinct. In addition, the distribution of the mean
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Figure 3: Relative frequency of the three groups of
ratings as a function of time
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Figure 4: The distributions of item and user mean
ratings

user ratings is significantly more skewed.
Different rating behavior of users accounts for the appar-

ent difference between the distributions. It turns out that
users who rate more items tend to have considerably lower
mean ratings. Figure 5 substantiates this effect. Users were
binned according to the number of items they rated, on a
linear scale. The graph shows the median of the mean rat-
ings in each bin, as well as the inter-quantile range in each
bin plotted as a vertical line. One of the explanations for
this effect is that “heavy” raters, those who explore and rate
tens of thousands of items, tend to rate more items that do
not match their own musical taste and preferences, and thus
the rating scores tend to be lower.

A distinctive feature of this dataset is that user ratings
are given to entities of four different types: tracks, albums,
artists, and genres. The majority of items (81.15%) are
tracks, followed by albums (14.23%), artists (4.46%) and
genres (0.16%). The ratings however, are not uniformly
distributed: Only 46.85% of the ratings belong to tracks,
followed by 28.84% to artists, 19.01% to albums and 5.3%
to genres. Moreover, these proportions are strongly depen-
dent on the number of ratings a user has entered. Heavier
raters naturally cover more of the numerous tracks, while
the light raters mostly concentrate on artists; the effect is
shown in Fig. 6. Thus, unlike the train set, the validation



10
2

10
3

10
4

0

10

20

30

40

50

60

70

80

90

100

Number of Ratings

M
e

d
ia

n
 M

e
a

n
 R

a
ti
n

g

Figure 5: Median of user ratings as a function of the
number of ratings issued by the user. The vertical
lines represent inter-quartile range.

and test sets, which equally weight all users, are dominated
by the many light-raters and dedicate most of their ratings
(51.61%) to artists rather than to tracks.
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Figure 6: The fraction of ratings the four item types
receive as a function of the number of ratings a user
gives.

All rated items are tied together within a taxonomy. That
is, for a track we know the identity of its album, perform-
ing artist and associated genres. Similarly we have artist
and genre annotation for the albums. There is no genre in-
formation for artists, as artists may switch between many
genres in their career. We show that this taxonomy is par-
ticularly useful, due to the large number of items and the
sparseness of data per item (mostly attributed to “tracks”
and “albums”).

3. TASK DESCRIPTION
The competition had a two-track structure offering two

different tasks. Track1 calls for predicting users’ rating to
musical items. Items can be tracks, albums, artists and
genres. Each user and item have at least 20 ratings in the
dataset (train, validation and test sets combined). A de-
tailed description of the provided dataset was given in Sec. 2.

The main dataset statistics are described in Table 1. Each
user has at least 10 ratings in the training data. Then, each
user has exactly four ratings in the validation data, which
come later in time than the ratings by the same user in the
training data. Finally, the test data holds the last 6 rat-
ings of each user. The contestants were asked to provide
predictions for these test scores. The evaluation criterion is
the Root Mean Squared Error (RMSE) between predicted
ratings and true ones. Formally:

RMSE =

√
1

|T1|
∑

(u,i)∈T1

(rui − r̂ui)2 (1)

Where (u, i) ∈ T1 are all the rating pairs in Track1 test data
set, rui is the actual rating of user u to item i, and r̂ui is
the predicted value for rui. This amounts to a traditional
collaborative filtering rating prediction task.

Track2 involves a less conventional task. A similar mu-
sic rating dataset was compiled, covering 4 times less users
than Track1. Once again each user and item have at least 20
ratings in the dataset (train and test sets combined); see Ta-
ble 1 for the dataset main statistics. The train set includes
ratings (scores between 0 to 100) to both tracks, albums,
artists and genres performed by Yahoo! Music users.

For each user participating in the Track2 test set, six
items are listed. All these items must be tracks (not al-
bums, artist or genres). Three out of these six items have
never been rated by the user, whereas the other three items
were rated “highly” by the user, that is, scored 80 or higher.
The three items rated highly by the user were chosen ran-
domly from the user’s highly rated items, without consider-
ing rating time. The three test items not rated by the user
are picked at random with probability proportional to their
odds to receive “high” (80 or higher) ratings in the overall
population. Note that many users do not participate in this
test set at all.

The goal of such a task would be differentiating high rat-
ings from missing ones. Participants were asked to identify
exactly three highly rated items for each user included in
the test. The evaluation criterion is the error rate, which is
the fraction of wrong predictions.

We had several objectives in designing the second track of
the contest. Initially, we wanted to add a dataset of a lower
scale, in order to appeal to competitors with less capable
systems, which might get discouraged by the large size of
the Track1 dataset. More importantly, the Track2 dataset
provided us an opportunity to experiment with a less es-
tablished evaluation methodology, which may better relate
to real life scenarios. The proposed metric is related to the
common recommendation task of predicting the items that
the user will like (rather than predicting the rating value of
items). Furthermore, the task of Track2 requires extending
the generalization power of the learning algorithm to the
truly missing entries (items that were never rated by the
user), as required in real life scenarios. Finally, the way we
drew negative examples (in proportion to their dataset pop-
ularity), discourages known trivial solutions to the top-K
recommendation task, where most popular items are always
suggested, regardless of the user taste.

We decided to exclude timestamps (both dates and times)
from the Track2 dataset. Our purpose was to center the
focus of the time-limited competition on the a specific aspect
of the problem. In particular, we assume that there are



Task #users #items Train Validation Test
Track1 1,000,990 624,961 252,800,275 4,003,960 6,005,940
Track2 249,012 296,111 61,944,406 N/A 607,032

Table 1: Datasets size statistics

many strong short-term correlations between various actions
of a user, which would greatly help in separating rated from
unrated items. For example, some users have the tendency
to listen to multiple tracks of the same album in a row. We
wanted to encourage solutions catering to the longer-term
user taste, rather than analyzing short term trends, thus we
hid the temporal information in Track2.

At both tracks, the test set was internally split into two
equal halves known as Test1 and Test2, in a way not dis-
closed to the competitors. Participants were allowed to sub-
mit their test set predictions every 8 hours, and receive feed-
back on their Test1 performance that was reflected in the
public leaderboard. The true rankings of competitors were
based on Test2 scores, which were not disclosed.

4. CONTEST CONDUCT
The contest took part over a period of three and a half

months from March 15 till June 30, 2011. The datasets
were made available to contestants on the first day of the
competition. In addition, the contestants could register for
the contest and have access to sample data to prepare their
software two weeks in advance to the beginning of the com-
petition.

During the competition, each team was allowed to submit
one solution every eight hours for each track of the competi-
tion. The submission system provided the contestants with
immediate feedback on the performance of the submitted
solution on the test set. The contest website also featured
a public leaderboard that showed an up-to-date ranking of
the best submissions so far (based on scores on the Test1
set).

The registration system required users to form teams and
to be part of only one team at a time. Teams could leave
the competition by marking themselves as inactive. The
contestants made heavy use of that functionality, but not
to actually leave the contest. Instead, it was used mostly
to regroup: Out of the 2389 users that registered for the
contest, 2100 were still part of an active team at the end of
the competition. During the competition, 4252 teams were
registered (more than users!) of which 1287 were active at
the end of the competition.

Each of the two contest tracks had about the same num-
ber of teams submitting to it: 1878 teams ever submitted
to Track1, 1854 to track2. The same is not true for the
number of submissions. During the competition, there were
6344 solutions submitted to Track1, while Track2 received
“only” 5542. Table 2 shows a histogram of the number of
submissions per track and how many teams submitted that
many times. Figure 7 shows the number of submissions per
day and track. As can be clearly seen from this plot, the
contestants were eager to (re-)submit the best solutions on
the last day of the competition.

The almost equal number of submissions and teams sub-
mitting is somewhat suprising, because the leadership of
Track2 was much more volatile than that of Track1 as can
be seen in Figure 8 and 9. During the competition, the top
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Figure 7: Submissions per day

spot on the public leaderboard changed 52 times for Track1
and almost twice as often, 96 times, for Track2. Even more
drastically, only 12 teams ever held the top leaderboard spot
in Track1 during the competition, while 35 teams held that
position for some period of time in Track2. We believe that
this greater volatility in the leadership of Track2 can be at-
tributed to the novel task to be solved in that track of the
competition.

0 500 1000 1500 2000 2500
Hours in the competition

20

22

24

26

28

30

R
M

S
E

Lemon

Blitzkrieg

KKT&#39;s Learning Machine

Roar Rat

bad idea.Roar Rat

glouppe-ulg

Just a guy in a garage

glouppe-ulg

libFM

Aron
commendo

Aron
commendo

Aron

commendo

National Taiwan University

Leadership changes in Track1

Figure 8: Leadership and RMSE over time for
Track1

According to the rules of the competition, the last sub-
mission of each team is used fot determining the winners,
not the best. Thus, the question arises whether all teams
managed to submit their best solution in time or whether
an earlier submission actually would have won. Much to
the relief of the teams involved, the order of the top spots
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Figure 9: Leadership and error rate over time for
Track2

Submissions Teams Track1 Teams Track2
0-9 1728 1738

10-19 80 65
20-29 36 29
30-39 13 2
40-49 8 7
50-59 4 6
60-69 0 1
70-79 4 1
80-89 1 1
90-99 2 2

100-109 0 1
110-119 1 0
120-129 1 1

Table 2: Submissions statistics: Number of submis-
sions per team

in the leaderboard would be the same if we would have used
the best submission. Similarly, for the top spots the pub-
licly reported rankings based on the Test1 set, equal the
ranking based on the undisclosed Test2 set, meaning that
contestants did not strongly overfit the Test1 set.

5. LESSONS
The KDD-Cup’11 workshop published 13 papers describ-

ing the techniques employed by top teams. These papers
describe many interesting algorithms, enhancing different
recommendation methods. We encourage the reader to look
at these papers for more details. Here, we will highlight
some of the higher-level lessons that we take away from the
competitors’ works.

The Track1 solutions followed much of the techniques that
were found successful at the Netflix Prize competition [1],
which aimed at the same RMSE metric. In a sense, reported
Track1 results reinforce many findings on the Netflix data,
which still hold despite the usage of a relatively different
dataset. Solutions were created by blending multiple tech-
niques, including nearest neighbor models, restricted Boltz-
mann machines and matrix factorization models. Among
those, matrix factorization models proved to perform best.

Modeling temporal changes in users’ behavior and items’
popularity was essential for improving solution quality. Among
nearest neighbors models, item-item models outperformed
user-user models. Such a phenomenon is notable due to
the fact that the number of items in our dataset is large and
roughly equals number of users, hence one could expect that
in such a setup user-user and item-item techniques will de-
liver similar performance. The given item taxonomy helped
in accounting for the large number of sparsely rated items,
however its effect was relatively low in terms of RMSE re-
duction.

The best result achieved on Track1 has RMSE=21. This
pretty much confirms our pre-contest expectations based on
Netflix Prize experience. Note that Netflix Prize results need
to get calibrated in order to account for the different rating
scales. While in the Netflix Prize the ratings range (dif-
ference between highest (=5) and lowest (=1) rating) is 4,
in our dataset the ratings range is 100. Hence, if one lin-
early maps our ratings to the 1–5 stars scale, RMSE of the
same methods will shrink by a factor of 25. This means that
on Netflix score range, the best score achieved at Track1 is
equivalent to 0.84, which is strikingly close to the best score
known on the Netflix dataset (0.8556). Comparing the frac-
tion of explained variance (known as R2), reveals more of
a difference between Track1 and Netflix Prize. The total
variance of the ratings in the Netflix test set is 1.276, cor-
responding to an RMSE of 1.1296 by a constant predictor.
Three years of multi-team concentrated efforts reduced the
RMSE to 0.8556, thereby leaving the unexplained ratings
variance at 0.732. Hence the fraction of explained variance
is R2 = 42.6%, whereas the rest 57.4% of the ratings vari-
ability is due to unmodeled effects (e.g., noise). Moving
to the Yahoo! Music Track1 test set, the total variance of
the test dataset is 1084.5 (reflecting the 0-100 rating scale).
The best submitted solution could reduce this variance to
around 441, yielding R2 = 59.3%. Hence, with the Yahoo!
Music dataset a considerably larger fraction of the variance
is explainable by the models.

Track2 of the competition offered a less traditional met-
ric: error rate of a classifier separating loved tracks from
unrated ones. We were somewhat surprised by the low er-
ror rate achieved by the contestants — 2.47% for best solu-
tion. This means that for over 97% of test tracks, the model
could correctly dictate whether they are among the loved
ones. However, such a performance should be correctly in-
terpreted in light of real life expectations. Our chosen met-
ric contrasted the same amount of positive (“loved items”)
and negative examples. In real life, one would argue that
positives and negatives are not balanced, but rather nega-
tives grossly outnumber positives. This makes the task of
identifying the “top-3” items harder. For future works, we
would try other ranking metrics, especially those contrast-
ing all unrated items with the rated ones. One example
would be recall@K, averaged across all users. A benefit of
the metric we employed was its being neutral to popular-
ity effects, which tend to greatly influence ranking-based
metrics. As long as one wants to resist the high impact of
popularity effects, alternative ranking metrics should be ad-
justed as well. For example, when measuring recall@K, one
can weight items inversely to their popularity, such that re-
trieving a popular item liked by the user is less rewarding
than retrieving an unpopular item liked by the user.

A key technique shared by the Track2 solutions is sam-



pling the missing ratings. This way, the proposed methods
do not only model the observed ratings, but also those rat-
ings sampled from the missing ones. This greatly improved
performance at Track2. This also confirms recent works [3,
11] showing that models that account also for the missing
ratings provide significant improvements over even sophisti-
cated models that are optimized on observed ratings only.
We note that as dictated by the test set balanced structure,
competitors resorted to balanced sampling. That is, the
number of sampled missing ratings equals to the number of
non-missing ratings for the same user. This also bodes well
with practices used when learning unbalanced classification
models, where often training is performed on a balanced
number of positive and negative examples. Yet, we would
like to explore what would have happened had the objective
function been different, such as the aforementioned average
recall@K metric, which is not utilizing an equal number of
positive and negative examples. Would we still want to con-
struct a balanced training set with equal number of positive
and negative examples per user, or maybe we would like to
use the full set of missing values as in [3, 5, 11]?

Another theme shared by many Track2 solutions is the
usage of pairwise ranking objective functions. Such schemes
do not strive to recover the right score for each item, but
rather maintain the correct ranking for each pair of items.
Pairwise ranking objective seems more natural and elegant
in our ranking-oriented setup, where item ordering matters,
not individual scores. A notable recommendation algorithm
of this family is BPR [10], which was indeed employed by
several teams. Yet, in future research we would like to fur-
ther experiment with the value of pairwise ranking solu-
tions, compared to the arguably cheaper regression-based
solutions, which try to recover each single user-item score
[5, 11]. In fact, the top two leading teams on Track2 [7, 8]
utilized regression techniques which minimize squared loss
of recovered user-item scores. Their results were as good
(or even better) than teams that utilize pairwise ranking
techniques.

Comparing results of Track1 and Track2 reinstates the
known observation that achievable RMSE values on the test
set lie in a quite compressed range. This was also evident
at the Netflix contest where major modeling improvements
could only slightly reduce RMSE. This observation becomes
much more striking when considering comparable improve-
ments on the error rate metric applied at Track2. Let us an-
alyze the influence of three components that improve mod-
eling accuracy.

1. Dimensionality of the matrix factorization model
On the RMSE front it was observed that after reaching
50-100 factors, there is barely an improvement when
increasing the number of factors; see, e.g., Figure 7 of
[4]. However, the case is very different with Track2,
where the error rate metric was used. Competitors
have resorted to very high dimensionalities of matrix
factorization models in order to improve performance.
For example, team National Taiwan University reports
error rate dropping from 6.56% to 4.25% when increas-
ing dimensionality from 800-D to 3200-D (see Table 2
of [8]).

2. Utilizing the given item taxonomy We have ob-
served a quite subtle RMSE reduction from around
22.85 to 22.6 by utilizing the taxonomy; see [4]. Sim-

ilar RMSE reduction is also reported ain Table 3 of
team InnerPeace solution [2]. When moving to the
error rate metric, utilization of the taxonomy results
in much more significant improvements. Team The
Art of Lemon [7] reports a matrix factorization model
(BinarySVD) achieving around 6% error rate, which
is reduced all the way to 3.49% by considering the
items taxonomy (BinarySVD+). Similarly, team The
Thought Gang reports (Table 3 of [9]) reducing the
error rate from 6.02% to 3.71% by accounting for tax-
onomy in a latent factor model.

3. Blending multiple models At Track1, best re-
ported solution by an individual model yields a test
RMSE of 22.12 [2]. Others could achieve RMSE=22.6
by a matrix factorization model [4]. When blending
multiple predictors, the best reported RMSE on the
same test set is close to 21, an improvement of just
around 5%. On the Netflix dataset, blending helped
even less (percentage-wise). However, on the Track2
error rate metric blending had a much stronger im-
pact. Best individual model (BinarySVD+) yielded
an error rate of 3.54% [7]. Yet, after blending, best
known solution has an error rate of 2.47% – over 30%
improvement thanks to blending.

In conclusion, we have found a consistent evidence that
the same modeling improvements that only modestly im-
pact RMSE, have a substantial effect on the error rate met-
ric. Similar evidence was also hinted elsewhere [6]. Given
the large popularity of the RMSE metric in recommenders
research, it is important to interpret RMSE improvements
well. Clearly, small RMSE changes can correspond to sig-
nificantly different ranking of items. For example, RMSE
minimizing algorithms tend to diminish variance by concen-
trating all predictions close to averages, with small devia-
tions from the average dictating item rankings. We would
like to leave here the question of whether small improve-
ments in RMSE terms can have a significant impact on the
quality perceived by real users?
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