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ABSTRACT
This paper describes an algorithm designed for Microsoft’s
Groove music service, which serves millions of users world
wide. We consider the problem of automatically generating
personalized music playlists based on queries containing a
“seed” artist and the listener’s user ID. Playlist generation
may be informed by a number of information sources in-
cluding: user specific listening patterns, domain knowledge
encoded in a taxonomy, acoustic features of audio tracks,
and overall popularity of tracks and artists. The importance
assigned to each of these information sources may vary de-
pending on the specific combination of user and seed artist.

The paper presents a method based on a variational Bayes
solution for learning the parameters of a model containing a
four-level hierarchy of global preferences, genres, sub-genres
and artists. The proposed model further incorporates a per-
sonalization component for user-specific preferences. Em-
pirical evaluations on both proprietary and public datasets
demonstrate the effectiveness of the algorithm and showcase
the contribution of each of its components.

1. INTRODUCTION
Online music services such as Spotify, Pandora, Google

Play Music and Microsoft’s Groove serve as a major growth
engine for today’s music industry. A key experience is the
ability to stream automatically generated playlists based
on some criteria chosen by the user. This paper consid-
ers the problem of automatically generating personalized
music playlists based on queries containing a “seed” artist
and the listener’s user ID . We describe a solution designed
for Microsoft’s Groove internet radio service, which serves
playlists to millions of users world wide.

In recommender systems research, collaborative filtering
approaches such as matrix factorization are often used to
learn relations between users and items [18]. The playlist
generation task is fundamentally different as it requires learn-
ing a coherent sequence to allow smooth track transitions.
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Central to the approach taken in this research is the idea
of estimating the relatedness of a “candidate” track to the
previously selected tracks already in the playlist. Such relat-
edness can depend on multiple information sources, such as
meta-data and domain semantics, the acoustic audio signal,
and popularity patterns, as well as information extracted
using collaborative filtering techniques.

The multiplicity of useful signals has motivated recent
works [10, 24] to combine several information sources in or-
der to model playlists. While it is known that all these fac-
tors play a role in the construction of a quality playlist [5], a
key distinction of Groove’s model is the idea that the impor-
tance of each of these information sources varies depending
on the specific seed artist. For example, when composing
a playlist for a Jazz artist such as John Coltrane, the im-
portance of acoustic similarity features may be high. In
contrast, in the case of a Contemporary Pop artist, such as
Lady Gaga, features based on collaborative filtering may be
more important. In Section 5, evaluations are provided in
support of this assumption.

Another key element of the model in this paper is per-
sonalization based on the user. For example, a particular
user may prefer strictly popular tracks, while another prefers
more esoteric content. Our method provides for modeling
user specific preferences via a personalization component.

The model in this paper is designed to support any artist
in Groove’s catalog, far beyond the small number of artists
that dominate the lion’s share of user listening patterns.
The distribution of artists in the catalog contains a long
tail of less popular artists for which insufficient informa-
tion exists to learn artist specific parameters. Therefore, the
Groove model also leverages the hierarchical music domain
taxonomy of genres, sub-genres and artists. When particu-
lar artists or possibly even sub-genres are underrepresented
in the data, the Groove model can still allow prediction by
“borrowing”information from sibling nodes sharing the same
parent in the hierarchical domain taxonomy.

The contributions of this work are enumerated below. The
first contribution is a novel model specification combining
several properties considered advantageous for playlist gen-
eration: (i) a hierarchical encapsulation of the music domain
taxonomy, (ii) flexibility to weight a number of similarity
types (audio, meta-data, usage, popularity), and (iii) a per-
sonalization component to model per-user preferences. The
second major contribution is an efficient variational Bayes
algorithm to learn the parameters of the model from data.
The final contribution of this paper is in describing a playlist
generation approach that serves the basis for a currently de-



ployed Groove radio algorithm. While some changes do exist
between this paper and the production system, this work is
the only published description of the methods underlying
such a large-scale commercial music service.

Our paper is organized as follows: Section 2 discusses rel-
evant related work. Section 3 motivates our approach, dis-
cusses the specification of our model and explains the algo-
rithm we apply to learn the parameters from data. Section
4 describes the features we use to encode playlist context.
Section 5 gives the details of our experimental evaluation.
Section 6 describes additional modifications that allow the
proposed approach to work in large-scale scenarios. Finally,
section 7 summarizes the paper.

2. RELATED WORK
Automatic playlist generation is an active research prob-

lem for which many formulations, approaches and evaluation
frameworks have been proposed. The problem has been var-
iously formalized as: constraint satisfaction [28], the trav-
eling salesman [17], and clustering in a metric space [27].
Other works [13, 15, 33] opt for a recommendation oriented
approach i.e., identifying the best tracks in the catalog given
the user and some context. To our knowledge, this paper is
among the first publications to describe a playlist algorithm
powering a large scale commercial music service. For more
background on playlist generation, we refer the reader to the
in-depth survey and discussion by Bonnin and Jannach [4].

Gillhofer and Schedl [11] empirically illustrate the im-
portance of personalization in selecting appropriate tracks.
Personalization via latent space representation of users is a
mainstay of classical recommendation systems [18]. Ferw-
erda and Schedl [10] proposed modeling additional user fea-
tures encoding personality and emotional state to enhance
music recommendations.

Many works discuss computing similarity metrics between
musical tracks. Collaborative Filtering (CF) or usage fea-
tures relate tracks consumed by similar users [1, 8, 22].
Meta-Data features, relating tracks with similar semantic
attributes, are explored in [3, 23, 27, 31]. Finally, acoustic
audio features, relating tracks based on their audio signal,
have been discussed in [7, 19, 33]. Similar to this paper,
the prevalent approach for these acoustic features is based
on the mel frequency cepstrum coefficients (MFCC), and/or
statistical properties thereof.

A study into how humans curate musical playlists showed
that both audio similarity, domain similarity, and other se-
mantic factors all play an important role [5]. Hybrid algo-
rithms, seeking to combine such factors in the music domain
have been described in earlier papers [17, 22, 24, 30]. These
methods range from linear combinations [17] to learning hy-
brid embeddings [24].

The music domain is characterized by hierarchical taxon-
omy levels of genre, sub-genre, artist, album and track. This
taxonomy is in use for categorizing music in both brick-and-
mortar and online music stores. The domain taxonomy has
been used to enhance automated algorithms for genre clas-
sification [6], and music recommendations [8, 25]. Gopal
et al. [12] propose a Bayesian hierarchical model for multi-
class classification that bears some resemblance to our model
though notably lacking personalization.

This paper is the first to propose an approach for auto-
matic playlist generation which includes a hierarchical model
that utilizes the domain taxonomy at various resolutions

(global, genre, sub-genre and artist), considers multiple simi-
larity types (audio, meta-data, usage), and incorporates per-
sonalization. Section 5 gives an extensive experimental eval-
uation, showing the importance of each of these parts to the
quality of the playlist.

3. MODELING CONTEXTUAL PLAYLISTS
The algorithm in this paper is designed to generate per-

sonalized playlists in the context of a seed artist and a spe-
cific user. In Groove music, a playlist request can be called
by each subscriber using any artist in the catalog as a seed.
An artist seed is a common scenario in many alternative
online music services, but the algorithm in this paper can
easily be extended to support also track seeds, genre seeds,
seeds based on labels as well as various combinations of the
above (multi-seed). In this paper, we limit the discussion to
the case of a single artist seed.

As explained earlier, constructing a playlist depends on
multiple similarities used for estimating the relatedness of a
new candidate track to the playlist. These similarities are
based on meta-data, usage, acoustic features, and popular-
ity patterns. However, the importance of each feature may
be different for each seed. In the presence of a user with
historical listening data, the quality of the playlist may be
further improved with personalization. A key contribution
of the model in this paper is the ability to learn different
importance weights for each combination of seed artist and
listening user.

An additional contribution of the proposed model is the
ability to support completely new or “cold” (i.e. sparsely
represented in the training data) combinations of users and
artists. If there is insufficient information on the user, the
proposed model performs a graceful fall-back, relying only
on parameters related to the seed artist. In the case of an
unknown or “cold” artist, the proposed model uses the hi-
erarchical domain taxonomy, relying on the parameters at
the sub-genre level. This property applies also to underrep-
resented sub-genres and even genres, afforded by relying on
correspondingly higher levels in the domain taxonomy.

The algorithm constructs a playlist by iteratively picking
the next track to be added to the playlist. At each stage,
the algorithm considers candidate tracks to be added to the
playlist and predicts their relatedness to the seed, previously
selected tracks and the user. Previously selected tracks, to-
gether with seed artist and user information, constitute the
“context”from which the model is trained to predict the next
track to play. This context is encoded as a feature vector,
as described in Section 4.

3.1 Playlist Generation as a Classification Prob-
lem

We denote by xi ∈ Rd the context feature vector repre-
senting the proposition of recommending a particular track
i at a particular “context” of previous playlist tracks, a seed
artist and the user1. These context feature vectors are mapped
to a binary label ri ∈ {0, 1},where ri = 1 indicates a positive
outcome for the proposition and ri = 0 indicates a negative
outcome. Thus, we reduce our problem of playlist selection
to a classification problem.

1The features encoded in xi will vary between different can-
didate tracks even if they belong to the same artist or genre.



The dataset is denoted by D and consists of context vec-
tors paired with labeled outcomes, denoted by the tuples
(xi, ri) ∈ D. The binary labels may encode different real-
world outcomes given the context. For example, in a dataset
collected from playlist data logs, a track played to its conclu-
sion may be considered a positive outcome (ri = 1), whereas
a track skipped mid-play may be considered a negative out-
come (ri = 0). Alternatively, consider a dataset of user-
compiled collections. Tracks appearing in a collection may
be considered positive outcomes, while some sample of cat-
alog tracks not appearing in the collection are considered
negative outcomes. In Section 5 we provide an evaluation
using both of these approaches.

3.2 Model Formalization
In what follows, we describe a hierarchical Bayesian clas-

sification model enriched with additional personalization pa-
rameters. We also provide a learning algorithm that gener-
alizes the dataset D and enables generation of new playlists.

3.2.1 Notation
We discern vectors and matrices from scalars by denoting

the former in bold letters. We further discern the vectors
from the matrices by using lowercase letters for the vectors
and capital letters for matrices. For example, x is a scalar,
x is a vector and X is a matrix. We denote by I the identity
matrix and 0 represents a vector of zeros.

The domain taxonomy is represented as a tree-structured
graphical model. Each artist in the catalog corresponds to a
leaf-node in the tree, with a single parent node correspond-
ing to the artist’s sub-genre. Similarly, each node corre-
sponding to a sub-genre has a single parent node represent-
ing the appropriate genre. All nodes corresponding to genres
have a single parent, the root node of the tree. We denote
by par(n) and child(n) the mappings from a node indexed
by n to its parent and to the set of its children, respectively.
We denote by G, S, A and U the total number of genres,
sub-genres, artists and users, respectively.

We denote by N the size of D, our dataset. For the i’th
tuple in D, we denote by gi, si, ai and ui the specific genre,
sub-genre, artist and user corresponding to this datum, re-

spectively. Finally, w
(g)
gi , w

(s)
si , w

(a)
ai , w

(u)
ui , w ∈ Rd denote

the parameters for genre gi, sub-genre si, artist ai, user ui,
and the root, respectively.

3.2.2 The Likelihood
We model the probability of a single example (xi, ri) ∈ D

given the context vector xi ∈ Rd, the artist parameters w
(a)
ai

and the user parameters w
(u)
ui as:

p(ri|xi,w(a)
ai ,w

(u)
ui

) =
[
σ
(
x>i (w(a)

ai + w(u)
ui

)
)]ri

·
[
1− σ

(
x>i (w(a)

ai + w(u)
ui

)
)](1−ri), (1)

where σ(x)
def
= (1+e−x)−1 denotes the logistic function. Note

how the likelihood depends on both per-user and per-artist
parameters. Personalization is afforded by the user param-
eters which allow deviations according to user specific pref-
erences The likelihood of the entire dataset D is simply the

product of these probabilities i.e.,
∏
i p(ri|xi,w

(a)
ai ,w

(u)
ui ).

3.2.3 Hierarchical Priors
The prior distribution over the user parameters is a mul-

tivariate Gaussian: p(w
(u)
ui |τu) = N (w

(u)
ui ; 0, τ−1

u I), where

τu is a precision parameter. The prior distribution over the
global, genre, sub-genre, and artist parameters applies the
domain taxonomy to define a hierarchy of priors as follows:

p(w(a)
ai |w

(s)
si , τa) = N (w(a)

ai ; w(s)
si , τ

−1
a I) ,

p(w(s)
si |w

(g)
gi , τs) = N (w(s)

si ; w(g)
gi , τ

−1
s I) ,

p(w(g)
gi |w, τg) = N (w(g)

gi ; w, τ−1
g I) ,

p(w|τw) = N (w; 0, τ−1
w I) , (2)

where τa, τs, τg, τw are scalar precision parameters. This
prior structure is the facet of the model that enables dealing
with “cold” artists using information sharing mentioned in
the motivation above.

We define hyper-priors over the precision parameters as:

p(τu|α, β) = G(τu;α, β) , p(τa|α, β) = G(τa;α, β) ,

p(τs|α, β) = G(τs;α, β) , p(τg|α, β) = G(τg;α, β) ,

p(τw|α, β) = G(τw;α, β) , (3)

where G(τ ;α, β) is a Gamma distribution and α, β are global
shape and rate hyper-parameters, respectively. We set α =
β = 1, resulting in a Gamma distribution with mean and
variance equal to 1.

3.2.4 The Joint Probability
We collectively denote all the model’s parameters by

θ
def
=
{
{w(u)

ku
}Uku=1, {w

(a)
ka
}Aka=1, {w

(s)
ks
}Sks=1, {w

(g)
kg
}Gkg=1,

w, τu, τa, τs, τg, τw
}
,

and the hyper-parameters by H = {α, β}. The joint prob-
ability of the dataset D and the parameters θ given the
hyper-parameters H is:

p (D,θ | H) =

N∏
i=1

p
(
ri | xi,w(a)

ai ,w
(u)
ui

)
·

U∏
ku=1

p(w
(u)
ku
| τu)

·
A∏

ka=1

p(w
(a)
ka
| τa,w(s)

par(ka)
) ·

S∏
ks=1

p(w
(s)
ks
| τs,w(g)

par(ks)
)

·
G∏

kg=1

p(w
(g)
kg
| τg,w) · p(w | τw) · G (τu;α, β)

· G (τa;α, β) · G (τs;α, β) · G (τg;α, β) · G (τw;α, β) .
(4)

The graphical model representing this construction is de-
picted in Figure 1.

3.3 Variational Inference
We apply variational inference (or variational Bayes) to

approximate the posterior distribution, p(θ|D,H), with some
distribution q(θ), by maximizing the (negative) variational

free energy given by F [q(θ)]
def
=
∫
q(θ) log p(D,θ|H)

q(θ)
dθ. F

serves as a lower bound on the log marginal likelihood, or
logarithm of the model evidence.

3.3.1 Logistic Bound
The joint probability in (4) includes Gaussian priors which

are not conjugate to the likelihood due to the sigmoid func-
tions appearing in (1). In order to facilitate approximate in-
ference, these sigmoid functions are bounded by a “squared
exponential” form, which is conjugate to the Gaussian prior.
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Figure 1: A graphical model representation of the pro-
posed model. Unshaded circles denote unobserved variables.
Shaded circles denote observed variables. Solid dots denote
hyper-parameters.

The following derivations resemble variational inference for
logistic regression as described in more detail in [14].

First, the sigmoid functions appearing in (4) are lower-
bounded using the logistic bound [16]. Introducing an addi-
tional variational parameter ξi on each observation i allows
the following bound:

σ(hi)
ri · [1− σ(hi)]

1−ri ≥ σ(ξi)e
rihi− 1

2
(hi+ξi)−λi(h

2
i+ξ

2
i )

(5)

where hi
def
= x>i (w

(a)
ai +w

(u)
ui ) and λi

def
= 1

2ξi
[σ(ξi)− 1

2
]. Using

(5), we substitute for the sigmoid functions in p(D,θ|H)
to obtain the lower bound pξ(D,θ|H). We can apply this
bound to the variational free energy:

F [q(θ)] ≥ Fξ[q(θ)]
def
=

∫
q(θ) log

pξ(D,θ|H)

q(θ)
dθ .

The analytically tractable Fξ[q(θ)] is used as our optimiza-
tion objective with respect to our approximate posterior dis-
tribution q(θ).

3.3.2 Update Equations
Variational inference is achieved by restricting the approx-

imation distribution q(θ) to the family of distributions that
factor over the parameters in θ. With a slight notation over-
loading for q we have

q(θ) =

U∏
ku=1

q(w
(u)
ku

) ·
A∏

ka=1

q(w
(a)
ka

) ·
S∏

ks=1

q(w
(s)
ks

) ·
G∏

kg=1

q(w
(g)
kg

)

· q(w) · q(τu) · q(τa) · q(τs) · q(τg) · q(τw),
(6)

where q denotes a different distribution function for each
parameter in θ.

Optimization of Fξ follows using coordinate ascent in the
function space of the variational distributions. Namely, we
compute functional derivatives ∂Fξ/∂q with respect to each
distribution q in (6). Equating the derivatives to zero, to-

gether with a Lagrange multiplier constraint to make q in-
tegrate to 1 (a distribution function), we get the update
equations for each q in (6). At each iteration, the optimiza-
tion process alternates through parameters, applying each
update equation in turn. Each such update increases the
objective Fξ, thus increasing F . We continue to iterate un-
til convergence. Owing to the analytical form of Fξ and the
factorization assumption on the approximation distribution
q, each component of q turns out to be Gaussian distributed,
in the case of the weight parameters, or Gamma distributed,
in the case of the precision parameters. Thus, in the follow-
ing we describe the update step of each component of q in
terms of its canonical parameters.

Update for user parameters

For each user ku = 1 . . . U we approximate the posterior of

w
(u)
ku

with a Gaussian distribution

q(w
(u)
ku

) = N
(
w

(u)
ku

;µ
(u)
ku
,Σ

(u)
ku

)
, (7)

Σ
(u)
ku

=

[
τuI +

N∑
i=1

I [ui = ku] 2λi · xix>i

]−1

µ
(u)
ku

=Σ
(u)
ku
·

[
N∑
i=1

I [ui = ku]

(
ri −

1

2
− 2λix

>
i 〈w(a)

ai 〉
)

xi

]
,

where I [·] is an indicator function. The angular brackets

are used to denote an expectation over q(θ) i.e., 〈w(a)
ai 〉 =

Eq(θ)[w(a)
ai ]

Update for artist parameters

For each artist ka = 1 . . . A we approximate the posterior of

w
(a)
ka

with a Gaussian distribution

q(w
(a)
ka

) = N
(
w

(a)
ka

;µ
(a)
ka
,Σ

(a)
ka

)
, (8)

Σ
(a)
ka

=

[
τa · I +

N∑
i=1

I [ai = ka] 2λi · xix>i

]−1

,

µ
(a)
ka

= Σ
(a)
ka
·

[
τa〈w(s)

par(ka)
〉+

N∑
i=1

I [ai = ka]

(
ri −

1

2
− 2λix

>
i 〈w(u)

ui
〉
)

xi

]
.

Update for sub-genre parameters

For each sub-genre ks = 1 . . . S we approximate the posterior

of w
(s)
ks

with a Gaussian distribution

q(w
(s)
ks

) = N
(
w

(s)
ks

;µ
(s)
ks
,Σ

(s)
ks

)
, (9)

Σ
(s)
ks

= (τs + |Cks |τa)−1 · I,

µ
(s)
ks

=Σ
(s)
ks
·

τs〈w(g)

par(ks)
〉+ τa

∑
ka∈Cks

〈w(a)
ka
〉

 ,
where Cks = child(ks) is the set of artists in sub-genre ks.



Update for genre parameters

For each genre kg = 1 . . . G we approximate the posterior of

w
(g)
kg

with a Gaussian distribution

q(w
(g)
kg

) = N
(
w

(g)
kg

;µ
(g)
kg
,Σ

(g)
kg

)
, (10)

Σ
(g)
kg

=
(
τg + |Ckg |τs

)−1 · I,

µ
(g)
kg

=Σ
(g)
k ·

τg〈w〉+ τs
∑

ks∈Ckg

〈w(s)
ks
〉

 ,
where Ckg = child(kg) is the set of sub-genres for genre kg.

Update for global parameters

We approximate the posterior over w with a Gaussian dis-
tribution

q(w) = N (w;µ,Σ) , (11)

Σ = (τw + τg ·G)−1 · I and µ = Σ ·

τg G∑
kg=1

〈w(g)
kg
〉

 .
Update for the precision parameters

The model includes 5 precision parameters: τu, τa, τs, τg, τw.
Each is approximated with a Gamma distribution. For the
sake of brevity we will only provide the update for τu. We
approximate its posterior with q(τu) = G(τu | αu, βu), where

αu = α+ d·U
2

is the shape and βu = β+ 1
2

∑U
ku=1〈

(
w

(u)
ku

)>
w

(u)
ku
〉

is the rate. Recall that α and β denote hyper-parameters in
our model.

Update for variational parameters

The variational parameters ξ1 . . . ξN in Fξ are chosen to
maximize Fξ such that the bound on F is tight. This is

achieved by setting ξi =

√
〈
(
x>i

(
w

(a)
ai + w

(u)
ui

))2
〉. We re-

fer the reader to Bishop [2] for a more in-depth discussion.

3.4 Prediction and Ranking
At run time, given a seed artist a∗ and a user u∗, our

model computes the probability of a positive outcome for
each context vector x1 . . .xM corresponding to M possible
tracks. This probability is given by:

r̂m
def
= p(rm = 1 | xm,D,H)

≈
∫
σ(hm)q(θ)dθ =

∫
σ(hm)N

(
hm | µm, σ2

m

)
dhm

(12)
where the random variable hm has a Gaussian distribution:

hm = x
>
m

(
w

(u)

u∗ + w
(a)

a∗

)
∼ N

(
hm | µm, σ

2
m

)
,

µm
def
= 〈x>m

(
w

(u)

u∗ + w
(a)

a∗

)
〉, σ

2
m

def
= 〈

(
x
>
m

(
w

(u)

u∗ + w
(a)

a∗

)
− µm

)2
〉.

Finally, the integral in (12) is approximated following MacKay
[21] using∫

σ(hm)N
(
hm | µm, σ2

m

)
dhm ≈ σ

(
µm/

√
1 + πσ2

m/8
)
.

(13)

4. FEATURES FOR ENCODING CONTEXT
The model as described in the previous section makes no

assumptions on the nature of the contextual features beyond
the fact that they encode relevant information for choosing
the next track to be added to the playlist. Since the main
contribution of this paper is in the definition of the model
and corresponding learning algorithm, our efforts to find the
best features for the application of playlist generation are by
no means exhaustive. However, in this section we offer some
insights into the types of features used by the algorithm.

In general, the features encode different types of similari-
ties or relations comparing a candidate track and its corre-
sponding artist to be added to the playlist with tracks (and
artists) previously selected as well as with the seed artist. In
cases where specific similarities are not applicable we apply
zero-imputation. We include a fixed feature always set to 1
to account for “biases” (intercept). We divide the features
into four groups categorized according to the type of signal
employed in their calculation:
Acoustic Audio Features (AAF) - These features cap-
ture acoustic similarity between musical artists by learning
a Gaussian Mixture Model (GMM) over mel frequency cep-
strum coefficients (MFCC) of an artist’s audio samples. The
approach follows the model of [29] for speaker identification:
Let Da =

{
zi ∈ R`

}
denote the mel frequency cepstrum co-

efficients (MFCC) of audio samples from a particular artist

a. Let φ̂a = arg maxφ
∏

zi∈Da
p (zi | φ) denote the maxi-

mum likelihood parameter setting of the GMM for a partic-
ular artist a. The audio similarity between two artists a1
and a2 is then given by

KL
[
p
(
z∗ | φ̂a1

) ∣∣∣∣∣∣ p
(
z∗ | φ̂a2

)]
, (14)

the Kullback Liebler divergence between the two correspond-
ing distributions. Track to track similarities are computed in
a similar fashion by considering GMMs over audio samples
from individual tracks.
Usage Features (UF) - Following [26] we learn a low-rank
factorization of the matrix R, where ri,j the element on the
i-th row and j-th column denotes the binary rating given
to the j-th artist in the catalog by the i-th user of the sys-
tem. This formulation is parameterized by a k-dimensional
vector for each user and artist appearing in the training

data. More precisely, the user vectors {ui}|U|i=1 and artist

vectors {aj}|A|j=1, collectively denoted φu are chosen to op-

timize the Bayesian model p(Du, φu) (Equation (5) in [26])
over the training dataset containing binary interactions be-
tween users and artists, denoted Du. The similarity between
two artists a1 and a2 is then given by σ

(
a>a1aa2

)
, where σ

denotes the sigmoid function. A similar treatment can be
applied to a matrix of user-track interaction and used to
derive similarities between tracks.
Meta-Data Features (MDF) - Meta-Data features are
based on the semantic tags associated with different tracks
and artists in Microsoft’s catalog (e.g. “easy-listening”, “up-
beat”, “90’s”). Each artist j in the catalog is encoded as a

vector bj ∈ {0, 1}|V |, where V denotes the set of possible
binary semantic tags. These vectors are generally sparse, as
each artist corresponds to only a small number of semantic
tags. The similarity between two artists a1 and a2 is then



given by the cosine similarity:

b>a1ba2
‖ ba1 ‖‖ ba2 ‖

(15)

Track to track similarity is computed by using sparse vectors
representing tracks.
Popularity Features (PF) - Popularity is a measure of the
prevalence of a track or artist in the dataset. Popularity is
used to compute unary features representing the popularity
of a candidate track and its artist. For a particular artist

a1 such a feature is computed popa1 = #(a1)
|Du| , where # (a1)

denotes the number of users who consumed a track by artist
a1 in the training corpus Du. Pairwise popularity features
are computed relating the popularity of the candidate track
and its artist to the popularity of the seed artist and previous
tracks. The relative popularity of artists a1 and a2 can be
computed as popa2

popa1
. Track to track and track to artist relative

popularity are computed similarly.

5. EVALUATION
The evaluation section is constructed to illustrate the ben-

efits of each of the various facets of the playlist generation
model proposed above. Specifically, we show the contri-
bution of each of the following properties: the hierarchical
modeling of the domain taxonomy (considering its effective-
ness for both popular and unpopular seed artists), the per-
sonalization component, the importance of each type of sim-
ilarity feature and their combinations, and the contribution
of the variational Bayes optimization procedure.

5.1 Datasets
As explained in Section 3.1, the model in this paper treats

playlist generation as a classification problem, for which the
parameters can be learned from examples, judiciously la-
beled through a variety of approaches. The two datasets
used for the evaluations exemplify different approaches to
the construction of the training data:
Groove Music Dataset is a proprietary dataset of user
preferences that was collected anonymously from Microsoft’s
Groove music service. It contains 334,120 users, 472,908
tracks from 45,239 artists categorized into 100 sub-genres
from 17 genres. Positive labels are assigned to tracks in a
user’s listening history that were heard to completion. Neg-
ative labels are assigned to tracks that were skipped in mid-
play by the user.
30Music Dataset is a publicly available dataset of user
playlists [32]. Tracks in this dataset were intersected with
Groove’s catalog in order to enable feature generation (i.e.
audio and content features). The resulting dataset contains
14,185 users, 252,424 tracks from 63,314 artists categorized
into 99 sub-genres from 17 genres. Positive labels are as-
signed to tracks appearing in a user’s playlist. Since no skip
information was available, negatively labeled examples were
obtained by uniformly sampling from tracks that did not
appear in the user’s playlist.

5.2 Experimental Setup and Results
We quantify the quality of the model using the Area Un-

der Curve (AUC) metric [9]. AUC enables quantifying the
trade-off between true positives and false positives over a
range of threshold configurations. By doing so, AUC cap-
tures the overall quality of a particular prediction method.

The model was trained on 70% of the examples (randomly
chosen) and evaluated on the remaining 30%. All results are
statistically significant with p-value ≤ 0.01. We compare it
against several baselines:
Partial Hierarchy - This baseline (actually three separate
baselines, one for each level of the hierarchy) learns only a
subset of the domain taxonomy parameters, corresponding
to increasingly coarser levels in the hierarchy than the four
levels of the the full model described in Section 3. Evalua-
tions are provided at each of the sub-hierarchies: global (no
hierarchy), genre (two-level) , and sub-genre (three-level).
Non-Personalized - A non-personalized version of the Groove
model is evaluated by removing the per-user parameters.
Combined Models The framework proposed in this work
spans a family of models parameterized by η ∈ {1, 2, 3, 4},
the number of levels of the hierarchical taxonomy and ϕ ∈
{0, 1}, the absence/presence of a personalization component.
Viewed this way, we can roughly equate different configura-
tions of these hyper-params with previous approaches pro-
posed in the literature. For instance the full hierarchy, non-
personalized (η = 4, ϕ = 0) variant of the model roughly
corresponds to the approach proposed in [12]. Further, the
non-personalized no-hierarchy variant (η = 1, ϕ = 0), cor-
responds to methods that have attempted to combine dif-
ferent similarity signals without taking into account user
preferences [17, 24]. Finally, a two-level hierarchy with per-
sonalization (η = 2, ϕ = 1) is similar in spirit (though not
identical in formulation) to methods that explicitly model
biases for different genres [8, 25].
Non-Personalized MAP Regression - This baseline is
a simplified version of the model where the likelihood is
changed to consider a regression problem and the optimiza-
tion is based on an maximum a posteriori (MAP) solution
(instead of variational Bayes). This method also considers
the domain taxonomy, but results are provided only for the
full-hierarchy.

Figure 2 compares the personalized full-hierarchy vari-
ant of the model to the various baselines mentioned above.
Gradually increasing partial domain taxonomies are consid-
ered along the x-axis. The Global, Genre, and Sub-Genre
labels, denote a one, two, and three level taxonomy, respec-
tively. The Artist label denotes the full-hierarchy model
shown in Figure 1.

The effect of adding personalization is apparent in both
datasets, but more notable in the Groove Music dataset
where “skips”, as opposed to random sampling, are used to
define negative labels. This indicates that skipping of tracks
has more user-specific dependencies beyond the user’s pref-
erence for a particular artist or genre. Also, clearly visible
in both datasets is the importance of the hierarchical do-
main taxonomy: AUC results improve as additional levels
of the hierarchy are considered. This effect is more consid-
erable in the 30Music dataset, where we conjecture that the
prediction task is based on a“less personal” signal. The non-
personalized MAP regression baseline performs worse than
the proposed model for both datasets. We attribute this to
the fact that this model is based on point-wise MAP esti-
mate of the parameters rather than full posterior estimates
given by the variational Bayes approach.

We also considered the contribution of the different feature
groups defined in Section 4. To this end we trained the
model, using the Groove Music dataset, on each subset of
the features separately and evaluated the AUC. Note that
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Figure 2: The effects of personalization and hierarchy on accuracy (as measured by AUC) are illustrated for (a) the Groove
Music dataset (a) the 30Music Dataset. Our framework can be parameterized to generalize several approaches in the literature
(see text).
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Figure 3: A log-log histogram of usage points for artists
in the groove catalog (computed over a subset). The large
majority of artists have very few observed usage points.

for this analysis we used a subset of the data for which no
features had missing values.

Table 1 summarizes the results of this analysis. Using
only usage features results in the highest AUC score, fol-
lowed by popularity, meta-data and acoustic audio features,
respectively. Although usage features perform well on their
own, we get additional benefits from using other types of
features. This is especially relevant when we consider “cold”
artists that have little usage information available. These
artists are by far the majority of those appearing in the cat-
alog as can be seen in the histogram shown in Figure 3.
Furthermore, the importance of usage features in relation
to other features varies across the domain taxonomy. Fig-
ure 4 illustrates this variance. The figure shows that genres
such as Classical and Jazz rely (relatively) much more on
audio features and less on usage features than genres such
as Spoken Word and Hip Hop.

In recommendation systems the cold user/item problem
describes the difficulty of providing recommendations for
users/items with little to no previous interaction with the
system. Figure 5 plots the AUC on the Groove Music dataset
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Figure 4: The relative energy of the weights assigned to each
Usage and Audio Features for the different musical genres
considered.

AAF MDF PF UF All
AUC 0.843 0.855 0.865 0.871 0.874

Table 1: AUC achieved by training only on a subset of
features on the Groove Music prediction dataset. Feature
groups are defined in Section 4

as a function of the amount of data available for users and
artists, respectively. The plot is cumulative e.g., at value 10
along the X-axis all users / artists with at most 10 training
examples are considered. AUC levels are significantly lower
for cold users but quickly improve as the number of train-
ing examples increases. This trend is another indication of
the importance of personalized information. In contrast to
users, there is almost no change in artists’ AUC values per
different number of observations, and even artists with zero
training examples show high AUC values. This showcases
again the hierarchical model’s ability to utilize the domain
taxonomy in order to mitigate the cold artist problem.

Finally, Figure 6 provides an illustration of artist parame-
ters using a t-SNE embedding [20] of artist parameter mean
values from the Groove music dataset. Note that proximity
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Figure 5: A cumulative plot illustrating the effect of
Artist/User coldness on test AUC. The AUC is plotted for
all Artists/Users with at least x labeled data points in the
training set.

in this plot is determined by similarity in the parameters of
the learning model. Namely, it does not necessarily reflect
“musical similarity”, but instead it indicates similarity in the
importance of the contextual features. The fact that many
artists of the same genre do not cluster together supports
the model’s underlying assumption from Section 1 that dif-
ferent consideration need be applied when generating their
playlists. It also suggests that priors at the genre level alone
are too coarse and must be broken down to their sub-genres.

Figure 6: tSNE embedding of artist parameters. The figure
shows a complex manifold that could not be captured by
modeling higher levels of the taxonomy alone. (Figure best
viewed in color)

5.3 Anecdotal Results
To give a flavor of the type of output generated by the

proposed approach, Table 2 shows the top five tracks in the
playlist for three very different seed artists. Notably, using
the Pop star Rihanna as a seed results in a playlist com-
posed of tracks by other Pop artists which do not necessar-
ily sound similar to Rihanna. For the Jazz and Classical
seed artists, we see that the playlist is not only composed of
tracks from the same genre of the artist, but further many

Track Title Artist Name Album Name

Artist Seed: Rihanna (Pop Singer)

Yeah, I Said It Rihanna ANTI
Birthday Katy Perry PRISM
She Will Be Loved Maroon 5 Songs About Jane
I’m Real Jennifer Lopez J. Lo
Yeah! (feat. Lil’ Jon & Ludacris) Usher Confessions

Artist Seed: Wes Montogomery (Jazz Guitarist)

Bumpin’ On Sunset Wes Montgomery Wes Montgomery: Finest Hour
The Natives Are Restless Tonight Horace Silver Song For My Father
I Remember Clifford Lee Morgan The Ultimate Collection
Gee Baby, Ain’t I Good To You Kenny Burrell Midnight Blue
West Coast Blues Wes Montgomery The Jazz Effect - Wes Montgomery

Artist Seed: Itzhak Perlman (Classical Violinist)

Il Postino: Theme (Instrumental) Itzhak Perlman Cinema Serenade
Brahms: Hungarian Dance No.5 Nicola Benedetti The Violin
Violin Concerto No. 2 in E Major .. Joshua Bell Bach
Piezas Caracteristicas, Op. 92 John Williams The Ultimate Guitar Collection
Adagio for Strings Leonard Bernstein Barber’s Adagio ...

Table 2: Anecdotal results: shows the top 5 tracks in the
playlist generated for several seed seed artists.

tracks include instrumentation similar to that of the seed
artist. These playlists are generated by a variant of the al-
gorithm proposed in this work which currently powers the
Microsoft’s Groove Music service.

6. PRACTICAL CONSIDERATIONS
In this section we offer some discussion on ideas that allow

the application of the model proposed in this paper to a real-
world system serving a large number of users.

The playlist is constructed sequentially by picking the
next track using the ranking induced by r̂m from (13). How-
ever, in practice we first apply two important heuristics.
First, since it is impractical to consider the tens of millions
of tracks in the Groove music catalog, we first pre-compute
a candidate list of M ≈ 1, 000 tracks for each possible seed
artist. The candidate list for an artist a∗ consists of a∗’s
tracks and tracks from artists similar to a∗. Second, we de-
fine a Boltzmann distribution over the m = 1 . . .M tracks
with each candidate track having a probability given by

pm = es·r̂m∑M
i=1 e

s·r̂i , where s is a tunable parameter. The next

track is chosen randomly with probability pm. This scheme
ensures a degree of diversity, controlled by s, between multi-
ple instances of similar playlists. This type of randomization
also acts as an exploration mechanism, allowing labels to be
collected from areas where the model is less certain. This
reduces the feedback loop effect when learning future models
based on user interactions with the system.

An advantage of the Bayesian setup described in this work
is that it is fairly straightforward to adjust the model pa-
rameters in an online fashion. For example, consider the
scenario where a playlist user skips several tracks in a row.
Our approach could be extended to update the user param-
eter vector given these additional explicit negatives, before
computing the next track selection.

Finally, our model is designed for implicit feedback sig-
nals, as these are more common in commercial settings,
hence the use of binary labels. However, in some scenarios
explicit user ratings are known. Support for such scenar-
ios can be achieved by modifying the likelihood term of our
model (in (1)) and re-deriving the update equations.

7. CONCLUSION
This work describes a model for playlist generation de-

signed for Microsoft’s Groove music service. The model
incorporates per-artist parameters in order to capture the



unique characteristics of an artist’s playlists. The domain
taxonomy of genres, sub-genres and artists is utilized in or-
der to allow training examples from one artist to inform pre-
dictions of other related artists. Furthermore, the proposed
model is endowed with the capacity to capture particular
user preferences for those users who are frequent playlist lis-
teners, enabling a personalized playlist experience. A vari-
ational inference learning algorithm is applied and evalua-
tions are provided to justify and showcase the importance of
each of the model’s properties from above. This paper is the
first to provide a detailed description of a playlist generation
algorithm currently deployed for a large-scale commercial
music service serving millions of users.
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