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ABSTRACT 
 
An important problem in multiview representation learning is 
finding the optimal combination of views with respect to the specific 
task at hand. To this end, we introduce NAM: a Neural Attentive 
Multiview machine that learns multiview item representations and 
similarity by employing a novel attention mechanism. NAM 
harnesses multiple information sources and automatically quantifies 
their relevancy with respect to a supervised task. Finally, a very 
practical advantage of NAM is its robustness to the case of dataset 
with missing views. We demonstrate the effectiveness of NAM for 
the task of movies and app recommendations. Our evaluations 
indicate that NAM outperforms single view models as well as 
alternative multiview methods on item recommendations tasks, 
including cold-start scenarios. 

 

Index Terms — neural multiview attention machines, neural 

attention mechanisms, multiview representation learning, 

collaborative filtering, recommender systems, item similarity 

 

1. INTRODUCTION AND RELATED WORK 

Multiview representation learning [22] is a rapidly growing research 
field concerned with the task of learning entity (item) 
representations [32] and similarities from several different 
information sources (views). The learned representations extract 
useful information from the different views and are later used for 
inferring multiview item similarities. 
    The explosion of readily available data in companies and 
organizations generates many opportunities to leverage various data 
sources for learning multiview item representations [1], [3], [22], 
[28]. For example, a movie (item) can be represented by its audio-
visual representation (e.g. video, soundtrack), textual description 
(plot summary), tags descriptions (actors, genres etc.) or 
Collaborative Filtering (CF) information (e.g. other movies that 
were co-consumed with the specific movie). Each data source 
enables a different view of the same item. 
    Different views however, vary in resolution and usefulness. For 
example, the genre view of a movie is usually less informative than 
its CF view, since inferring movies relations at the genre level is 
very coarse. A good multiview model learns a multiview similarity 
function that integrates information from each view based on its 
usefulness w the other views and the specific task at hand. 
    In real world datasets, it is often the case that different views 
cover different subsets of items. For example, when a new movie is 
released, CF information is not available and item relations can only 
be inferred by Content Based (CB) information (e.g. genres, actors, 
plot, etc.). In Recommender Systems research, this is known as the 
items cold-start problem [23]. A good multiview model can 
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graciously fallback to a similarity function based on available views 
(e.g. CB views) when CF information is missing. Hence, the 
multiview approach provides substantial merit when working with 
missing data.  
    NAM is an attention based model that learns item representations 
and similarities based on multiple views. First, view-dependent item 
representations are learned in a latent vector space with a view 
dependent similarity function. Then, the final multiview similarity 
score is obtained via a novel neural attention mechanism that learns 
to quantify the relative contribution from each view w.r.t. the other 
views and the task at hand. In this paper, we demonstrate NAM 
using datasets of movies and apps containing both CB and CF data. 
Evaluations indicate that NAM produce multiview item similarities 
that are superior to other singleview and multiview models, and 
gracefully handles cold start scenarios. 
    Neural attention mechanisms are emerging techniques that affects 
a variety of different fields [2], [11], [19], [21], [31], [32], [33]. For 
instance, in [24] the authors suggest using attention mechanism for 
improving the nearest neighbors in each view, however, the 
integration between different views is set by hyperparameters. In [8] 
the authors utilize attention mechanism with multiview data, but the 
proposed model is not originally designed for handling cold-start 
scenarios. Different from [24] and [8], NAM produces multiview 
item similarities aside with attention mechanisms. Another key 
feature that differentiates NAM from the aforementioned works is 
its ability to produce item similarities in missing view scenarios. 
 The problem of multiview representation learning is an active 
research field [1], [3], [13], [22], [29]. In the context of 
Recommender Systems, Collaborative Deep Learning (CDL) [28] is 
a very popular hybrid recommendations model. CDL employs a 
denoising autoencoder along with WMF. Recently, CB2CF [6] was 
proposed for addressing the cold-start problem in recommender 
systems. CB2CF, can be seen as an out-of-sample extension [34] 
technique that learns a mapping from a CB view of items to the CF 
view via a deep multiview model. Instead, NAM utilizes any 
available views to achieve its ultimate task (e.g., learning item 
recommendations). In Section 3, we show that NAM is comparable 
to CB2CF in the cold start scenarios, while outperforming other 
existing methods when CF data is available. 
    Our contribution is in introducing a novel model for attentive 
multiview item similarity. The model naturally handles missing 
views and provides competitive results on recommendation tasks 
including cold start scenarios. 

 

2. NEURAL ATTENTIVE MULTIVIEW MACHINES 

NAM is a general attentive multiview model that can be employed 
on a plethora of supervised tasks. In Sections 2.1 and 2.2, we 
generally explain the NAM model. Next, in Section 2.3 we provide 



 

 

further details on a version of NAM specifically designed for 
multiview item recommendations. This particular version of NAM 
is evaluated in Section 3.  

 Let � = ������
	  be a set of items. A direct view 
�: � → ℝ� of � is 

a function that maps an item to a vector. Let 
� = �
�
���∈� be a set 

of explaining views, where ℎ ∈ � is an index that represents the 
view type. The explaining views 
� provide different 
complementary information about the items. For example, if ℎ 

represents textual (visual) information, then 
�
�(�) is a vector that 

encodes the textual (visual) description of the item �. 
    A pairwise view of � is a function 
�: � × � → ℝ that receives a 
pair of items (�, �) and outputs a scalar. 
� is used as a supervisor 
that determines the true affinity between pairs of items. For example, 
in the task of collaborative filtering dataset, the supervision is 
determined by item co-occurrences. Hence,  
�(�, �) = 1 if the items  
� and � were co-consumed by a user, otherwise 
�(�, �) = 0.  
    Let � be a dataset of item pairs (�, �) ∈ �. Then, for each pair 
(�, �), NAM is supervised by the supervisor view that produces 
labels 
�(�, �). For example, in the case of item co-occurances, � 
contains positive item-pairs (�, �) that were co-consumed by the 
same user (
�(�, �) = 1) and negative item-pairs (�,  ) that were 
never co-consumed together by the same user (
�(�, �) = 0). 
    NAM is employs a two-phase process: In the first phase, the 
model learns view-dependent item representations and 
corresponding similarity functions by using � and the supervisor 
view 
�. Then, in the second phase, �, 
� and the view-dependent 
similarity functions are used for producing a final multiview 
attentive scoring mechanism. Next, we describe the general NAM 
model and its two-phase training procedure. The NAM architecture 
is depicted in Fig. 1 and detailed below. 

2.1. Phase 1 – View Dependent Training 

In the first phase, NAM learns view-dependent representations and 

similarity functions. To this end, for each view, 
�
� we define view-

dependent context and target embedding functions !� , "�: ℝ#$ →
 ℝ#&, where '� stands for the dimension of the direct view 
�

�. We 

denote by !�
� ≜ !�(
�

�(�)) and "�
� ≜ "�(
�

�(�)) the mapping of the 

different (direct) item views 
�
�(�) into two ')-dimensional vector 

spaces. Namely, !� , "� map item �’s direct views 
�
�(�) (e.g. audio, 

image, text) into !� and "�, the context and target latent 
representations respectively.  

    Let *�: ℝ#& × ℝ#& → ℝ be a view-dependent scoring function that 
computes the similarity for item-pair (�, �) using their corresponding 

context and target representations !�
� and "+

�. The similarity score 

of an item-pair (�, �) induced by *� is denoted by *�+
� ≜ *�,!�

�, "+
�-. 

    Let .: ℝ × ℝ → ℝ be a loss function that computes the loss for 
(score, label) pairs, where the score and label are obtained by the 

scoring function *� and the supervisor view  
�. In addition, denote 

ℒ�+
� ≜ �

|�| ∑ .�+
�

�∈�  with .�+
� ≜  . 2*�+

� , 
�(�, �)3. Then, our objective is 

to minimize,  

                                ℒ� = ∑ ℒ�+
�

(�,+)∈� .                                  (1) 

Note that when minimizing ℒ�+
� , each term .�+

�  is minimized 

independently and hence !� , "� and *� are also learned 
independently for each view in separate. 

    Once !� , "� and *� are learned for each view, we proceed to the 
second training phase that performs attentive multiview training. 

2.2. Phase 2 – Attentive Multiview Training 

In this phase, NAM learns an attentive multiview scoring function 
that combines the view-dependent similarity scores. This scoring 
function utilizes an attention mechanism that is designed to quantify 
the contribution of each view ℎ to the similarity between items � and 
�, and handles missing views. 

      Let 4�: ℝ#$ →  ℝ#5 be a view-dependent attention function, 

where ℎ ∈ � and denote 4�
� ≜ 4� 2
�

�(�)3. 4�
� maps the view 

representation of item � to a '7- dimensional attention vector. For 

each view ℎ, the direct views 
�
�(�) and 
�

�(�) of items � and � are 

mapped to 4�
� and 4+

�, respectively.  
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Figure 1. A schematic illustration of NAM 

 

 



 

 

 Let ;�: ℝ#5 × ℝ#5 → ℝ  be a view dependent pairwise attentive 

scoring function and denote ;�+
� ≜ ;�(4�

� , 4+
�). ;�+

�  quantifies the 

amount of useful (pairwise) information provided by the view ℎ. 
Then, the multiview attentive similarity score is given by ?�+ =
∑ 9�+

�
�∈� 8�+

� , where 8�+
� = @�*�+

� + B� is a view-dependent affine 

transformation designed to normalize the view-dependent similarity 

score, and 9�+
� = exp, ;�+

� -/ ∑ exp, ;�+
� -�∈�  are the attention 

coefficients. ?�+ is the final output of the model. Therefore, during 

inference, NAM scores a pair of items (�, �) using ?�+. Note that the 

output ?�+ is a combination determined by the view dependent 

attention functions 9�+
�  that considers the relative information 

coming from a specific view ℎ with respect to all other views.  
   Finally, the NAM loss at the second phase of training is defined as 

                      ℒ=7> = ∑ .�+
=7> + <ℒ�+

�
(�,+)∈�                (2) 

with  .�+
=7> = . 2?�+ , 
�(�, �)3, and ℒ�+

�  as defined earlier.  The final 

NAM loss ℒ=7> balances between learning the optimal attentive 
combination of views by minimization of the loss on the output 

terms ?�+ while still allowing small amount of finetuning !� , "� and 

*� via the <ℒ�+
�  loss term. 

2.3. Attentive Multiview Item Recommendations 

The NAM model is a general multi-view framework that can be 
employed for a variety of tasks. Next, we present a specific version 
of NAM designed for multiview item recommendations. As 
explained above, in this particular case, the data consists of item 
pairs (�, �) that were co-consumed by the same user.  Note that � and 
� might be co-consumed more than once by different users and hence 
(�, �) may appear in the data multiple times. For each positive 

example (�, �) we randomly draw G negative examples �(�,  �)����
H  

such that (�,  �) were never co-consumed together by the same user. 
These positive and negative pairs define the dataset �. The pairwise 
supervisor view 
� maps each positive and negative pairs to 1 and 
0, respectively.  

    The explaining views we use are 
� = �
IJ
� � ∪ �
IL

� �>∈M. 
IJ
�  is 

the latent collaborative filtering view of the items obtained by 

item2vec [7], and �
IL
� �>∈M are content based views derived from 

different types of metadata that exist for the items. Specifically, for 
movies we used the following views: genres, actors and tags (each 
represented a binary vector), year of release (a positive integer), and 
latent vector that encodes the movie textual description (computed 
by a pretrained BERT model [10] that operates on the raw text). For 
apps, we used tags (binary vector), category (one-hot vector) and the 
app textual description (encoded using BERT in the same manner as 
done for the movies). 

    For all N ∈ O, !IL and "IL  are implemented as fully connected 
(FC) neural networks with a single ReLU activated hidden layer of 

size '). !IJ , "IJ and 4� are implemented as FC linear networks. 

The scoring functions *� and pairwise attentive functions ;� are 

implemented as the cosine similarity that receives !� , "�  and 

4� , 4� as input, respectively, and outputs a scalar. 
    The loss function . is set to the negative log softmax with negative 
sampling (SNS). This loss function was successfully applied for 
item recommendations in [7]. By setting the SNS loss in Eqs. (1) 
and (2) we get 

                     .�+
� = −*�+

� + log ∑ exp,*�=T
� -H

���  

and 

                     .�+
=7> = −?�+ + log ∑ exp,?�=T-H

��� , 

respectively. Both ℒ� (phase 1) and ℒ=7> (phase 2) are minimized 
via stochastic gradient descent. 
    As explained above, NAM uses all the available views to produce 
the ultimate pairwise scores given the specific task at hand. In case 

of cold items, NAM naturally scores a pair of items (�, �) via ?�+, 

but using the available views only. Thanks to the attention 
mechanism,  handling cold items is done by setting the pairwise 

attention coefficient ;�+
IJ  to −∞ if  � or � are cold, respectively. For 

example, assume � is a warm item and � is a cold item and lacks  CF 

representation. Then, ;�+
IJ = −∞ → 9�+

IJ = 0. 

 

3. EXPERIMENTAL SETUP AND RESULTS 

Our evaluation includes two datasets: First is the Movies dataset is 
based on the publicly available MovieLens dataset [14] consisting 
of both CF data and CB. It consists of 22,884,377 ratings collected 
from 247,753 users that watched some 34,208 movies. The movies 
are rated using a 5-star scale and for each user we consider all the 
movies with ratings above 3.5 to produce a dataset of co-occurring 
movies. This results in 11,108 unique movies (items) consumed by 
173,266 users (sets), which are used to form the CF view with 
item2vec [7].  For each movie, we further collected metadata from 
TMDB and IMDB to form the genres, actors, year, tags and textual 
description views as explained in Section 2.3. 
    The second dataset is a propriety dataset containing CF and CB 
data of apps from the Microsoft Windows Store. The CF view is 
obtained by the application of item2vec to a sample of 33K unique 
items (apps) and 5M user activity sessions. Each session is a list of 
items that were co-clicked during the same session. The CB views 
(tags, category, textual description) are obtained as explained in 
Section 2.3. 
    The evaluation covers four models: two versions of NAM and two 
other baselines as follows: 
    I2V: This is the item2vec model from [7]. This model is used as 
a CF baseline model. I2V cannot produce recommendations for cold 
items as it uses CF relations only.  
    CB2CF: This model was recently proposed in [6] for mitigating 
the cold start problem. It employs deep regression from items CB 
representations to their corresponding CF representations. Then, it 
is used to predict the CF vectors for cold items. CB2CF optimized 
for handling cold start scenarios and serves as a challenging baseline 
for evaluating NAM in cold start scenarios. 
    NAM: The proposed model (Section 2). 
    NAM-CB: This is a modified version of NAM that utilizes the 

content based views only �
IL
� �>∈M. In this version,  we omit the 

CF view 
IJ
�   by setting ;�+

IJ = −∞ for all (�, �).  

    All hyperparameters were determined using a separated 
validation set. The target dimension for I2V, CB2CF and NAM 
variants (')) was set to 100. For NAM we set < = 0.1. All models 
were trained for 60 epochs using ADAM [17] optimizer with 
minibach size of 32. Negative sampling ratio was set 4 for all models 
that use negative samples. 
    We report mean values obtained from 10 fold cross validation 
procedure. The following evaluation measures are considered: 
    Hit Ratio HR@K [23]: For a positive pair (�, �) HR@K outputs 1 
if target item � is ranked in the top K recommendations by the model 
w.r.t. the query item � and 0 otherwise. 
    Mean Reciprocal Rank (MRR@K) [23]: This measure assigns a 
monotonic decreasing score for the rank of the target item if it is 
among the top K recommendations and 0 otherwise. Different from 
HR@K, the MRR@20 measure does consider the order of the 
recommendation list. 
    Figure 2 depicts HR@K and MRR@K results for the Movies and 
Apps datasets, respectively. These results showcase the ability of 



 

 

NAM to generate superior recommendations when compared to the 
considered baselines. 
    Figure 3 depicts the HR@K and MRR@K curves for an ablation 
study over the views, on the Movies dataset (due to space limitation, 
we do not present an ablation study for the Apps datasest). We can 
see that NAM is the champion and NAM-CB is competitive with 
I2V (CF view), even though it utilizes CB views only. Among each 
of the individual CB views, the tags view produces the best result. 
This can be explained by the rich and informative set of tags that is 
associated with the movies. 
    Although NAM is not trained specifically for solving cold start 
scenarios, handling cold items is an inherent feature of NAM. We 
compare NAM to CB2CF which is specifically designed for 
addressing the cold start scenario and show competitive results. The 
following experiment focuses on the case in which some of the items 
are cold with no CF data at all. Consider a catalog of items denoted 
as the warm catalog. In this catalog, each item has at least one 

acquisition.  Consider another new set of cold items that have no CF 
data at all, denoted as the cold catalog. We evaluate HR@20 and 
MRR@20 for each one of the following  two scenarios: 
    Warm: Item-to-item (I2I) recommendations within the warm 
catalog (both items belong to the warm catalog). This test case 
includes item-pairs (�, �) such that both � and � are warm. 
    Cold: I2I recommendations in which one of the items belongs to 
the cold catalog, and the other may belong to the cold or the warm 
catalog. The cold test set includes item-pairs (�, �) of three different 
cases: 1) � and � are both cold. 2) � is warm and � is cold. 3) � is cold 
and � is warm. 
    In the warm scenario, we evaluate the ability of NAM to identify 
recommendations within the existing warm catalog which does not 
exhibit any degradation due to the introduction of new cold items. 
The second cold scenario, evaluates the ability of NAM to provide 
recommendations when either the query or the candidate items are 
cold. For each dataset, we perform 10 folds cross validation 
according to the following procedure: We simulate the cold test 
catalog by randomly picking 10% of the items and discarding their 
acquisitions from the train users (or session in the Apps dataset) 
history. Then, each model was trained on the remaining 90% of the 
items which now forms the “warm” train catalog. We then merged 
the two catalogs and calculated the resulting evaluation measures, 
separately for each scenario, on the test users (or sessions in the 
Apps dataset). 
    The HR@20 and MRR@20 results for the Movies and Apps 
datasets are presented in Tables 1 and 2, respectively. Recall that 
CB2CF addresses only the cold start scenario. Hence, it is evaluated 
on the cold catalog only. NAM is superior at handling cold start 
scenarios without causing any degradation to the warm catalog. 
NAM remains superior within all of the tested scenarios and 
therefore can serve as a hybrid system while supporting cold start 
scenarios as well. Moreover, NAM performs slightly better than 
CB2CF which is designed especially for the cold start scenario. 

 

Table 1: “Warm” and “Cold” HR@20 values per model the Movies and Apps datasets.  
 Movies Apps 

NAM-CB CB2CF NAM NAM-CB CB2CF NAM 
Warm 0.12 - 0.177 0.276 - 0.321 
Cold 880.0  0.097 0.11 710.1  0.174 0.181 

 
Table 2: “Warm” and “Cold” MRR@20 values per model on the Movies and Apps datasets.  

 Movies Apps 
NAM-CB CB2CF NAM NAM-CB CB2CF NAM 

Warm 0.027 - 0.0339 0.0478 - 0.0537 
Cold 720.01  0.0176 0.018 650.02  0.029 0.031 

 

        Figure 3. Ablation study. HR@K and MRR@K results for Movies. 

 

Figure 2. HR@K and MRR@K for the Movies and Apps datasets. 
 

 



 

 

    We remark two interesting observations regarding NAM-CB. We 
notice that NAM outperforms NAM-CB on the cold scenarios. This 
behavior is originated in two reasons: The first reason is due to the 
fact that the cold scenario includes three different cases as explained 
above. In case 2 (� is warm and � is cold), the context item � is warm 
and hence has a CF view. Therefore, NAM utilizes the available CF 
view when computing the scores between � and the rest of the warm 
items in the catalog. In contrast, NAM-CB utilizes the CB views 
only. The second reason is due to a gap between validation and 
training errors in NAM-CB. This gap can be noticed by comparing 
the performances of NAM-CB between the warm and cold regimes, 
demonstrating the inherent trade-off between providing warm to 
warm recommendations and supporting cold start scenarios. 

4. CONCLUSION AND FUTURE WORK 

We presented NAM – a neural attentive multiview machine that 
facilitates multiview item similarity with a novel attention 
mechanism. NAM learns to attend the relevant views that most 
contribute to the task at hand. Moreover, NAM naturally produces 
multiview item similarities, where some of the views are missing. 
We demonstrated the application of NAM for movies and apps 
recommendations and showcased its ability to learn multiview item 
similarities from multiple CB and CF views. In empirical evaluation, 
NAM outperformed other existing baselines across various 
measures, both in warm regimes and cold start scenarios. 
    In the future, we plan to employ NAM for other tasks, where the 
item-pairs ��, �) and hence � are derived differently. For example, 
NAM can be used for identity recognition and verification tasks [4], 
[5] by compiling a dataset of pairs (�, �), where � and � are two 
examples of the same identity (person), and (�,  ) are two examples 
of different identities. In this case, the different views can represent 
different images, voice samples or any additional auxiliary 
information available on the identities. Then, NAM utilizes the 
multiple views for performing multifactor biometrics. 
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