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Abstract

Recommender systems are increasingly used in industry for predicting taste and pref-

erences. Algorithms based on Matrix Factorization (MF) are one of the most efficient

and accurate approaches to collaborative filtering. In these models users and items are

embedded into a lower dimensional latent space in which the affinity between a user and

an item is determined by the inner product of their representative vectors.

This thesis spans across three main tiers of MF models. First, we examine the basic

setting and compare different approaches for defining and learning the problem. We then

present some novel enhancements for modeling temporal dynamics and taxonomies within

the MF framework. We focus on a model designed for the Yahoo! Music dataset that

was developed as part of the preparations for KDD-Cup‘11 on music recommendations.

The second tier of this thesis deals with a scalability issue at the retrieval phase

– after the training has concluded. We introduce a difficulty caused by the need to

efficiently compute a large number of inner products between user and item vectors.

We were surprised to discover that while this is a common problem to any large scale

recommender based on Matrix Factorization, the problem of efficient retrieval in an inner

product space has hardly been addressed in literature. We therefore suggest a novel data

structure for efficient retrieval of the k-nearest neighbors where similarity is based on the

inner-product.

The last tier of this thesis deals with item oriented recommendations, but also touches

on the scalability issue from a different angle. We abandon the traditional approach of

MF models which tries to model both users and items, and instead propose a model that

learns probabilities for two items to be co-consumed together. This work is motivated by

many real world scenarios in which users long term history does not exists or irrelevant to

her current interests. The typical sparseness of collaborative filtering datasets prevents

establishing reliable similarity relations for many item pairs in the long tail. We thus
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propose a global optimization procedure that utilizes both direct and indirect relations

between items in order to encode co-consumption probabilities in a latent Euclidean

space. The use of a Euclidean space rather than an inner product space bypasses the

scalability issue from above by facilitating the use of many well studied nearest neighbor

retrieval algorithms.
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I Introduction

Collaborative Filtering (CF) recommender systems based on latent factor models

have repeatedly demonstrated superior results when compared to other algorithms (e.g.,

neighborhood models and restricted Boltzmann machines) [1, 2]. This thesis focuses

on latent factor models for recommendation systems, sometimes known also as Matrix

Factorization (MF) models. The main contribution of this thesis is threefold: First,

we present state of the art extensions to the basic MF model that can capture more

signals such as taxonomy and different temporal dynamics. Specifically, we are first to

show a model that can utilize taxonomy to improve predictions accuracy. This work falls

inline with state of the art research in the field, in which different variants of MF models

are proposed in order to improve aspects such as accuracy, recommendation quality, or

scalability.

Second, we introduce a scalability challenge common to any MF model with regard to

the retrieval of the recommendations. Retrieval of recommendation requires computing a

very large number of inner products between user vectors and item vectors which strains

CPU resources and cause high latency in online systems. While this task is essential in

any large scale real world recommender, the problem was hardly discussed in the academic

literature. The core of this study deals with finding top-k vectors that maximize the inner

product with some other “query” vector. We are first to introduce algorithmic solutions

(both exact and approximate) to this problem.

Third, we discuss item-oriented recommendations in which the recommendations are

computed based solely on the small set of items the user is currently considering. Unlike

the “traditional” case in which the algorithm models both users and items, our approach

models only items based on a history of short term interactions. Furthermore, our item-

based model encodes items similarity via Euclidean proximity (rather than inner product
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similarity) and therefore overcomes the aforementioned retrieval challenge by enabling

the use of the plethora of Euclidean nearest neighbor retrieval algorithms (e.g., metric

trees, local sensitive hashing, etc.).

1.1 Thesis Organization

This thesis begins with a comprehensive overview of latent factor model discussed in

Chapter 2. We formulate the challenge of a CF recommender system and present different

learning algorithms to infer latent parameters.

In Chapter 3 we extend the basic model from Chapter 2 and present a sate of the art

model that captures signals such as taxonomy and different temporal signals to improve

accuracy. Different parts of this research has been published in [2, 3, 4]. The initial

part of this work was done in preparation to the KDD’11-Cup competition organized by

Yahoo! Research under the guidance of Gideon Dror and Yehuda Koren. The chapter

begins with a brief description of the competition and then continues to describe our

algorithmic solution to this competition which forms the core of the chapter.

Chapter 4 presents a scalability issue common to any MF model with regard to the

retrieval of the recommendations (after the learning has concluded). Retrieval of rec-

ommendations requires computing a very large number of inner products between user

vectors and item vectors. While this task is essential in any large scale real world recom-

mender, the problem of efficient retrieval is hardly discussed in the academic literature.

We propose two methods to efficiently retrieve recommendations in the MF framework.

The core of this research was published in [5].

Chapter 5 describes a new algorithm focused on the task of item based recommen-

dation, in which user profiles are not available or irrelevant (e.g., when the current,

short-term interest is unrelated to longer term inclinations). While evidentially used in

practice, we are not aware of published scientific works addressing collaborative-filtering

item-oriented recommendations. We present an item-based recommendation algorithm

that also embeds item vectors in a Euclidean space. Parts of this work was published in

[6].
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As part of my PhD, I also explored other information retrieval tasks. These earlier

studies were centered on Music Information Retrieval (MIR) from Peer-to-Peer (P2P)

datasets. This additional research was published in several conferences and journals

[7, 8, 9, 10, 11, 12, 13] and briefly summarized in Chapter 6.

1.2 Notation

We reserve special indexing letters for distinguishing users from items: for users u and

for items i, where indexes are i ∈ {1, . . . ,M} for items and u ∈ {1, . . . , N} for users.

We use regular lower-case fonts for denoting scalars, bold lower-case fonts for denoting

vectors, and bold upper-case fonts for denoting matrices. For example, x – is a scalar,

x – is a vector, and X – is a matrix. We denote by θx,y the angle between the vectors x

and y at the origin. Finally, we denote the l2-norm of a vector x by ∥x∥.
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II Recommenders Based on Matrix Factorization

Matrix Factorization (MF) based recommender systems model users and items by

embedding both into a lower dimensional latent space in which the affinity between a

user and an item is determined by the inner product of their representative vectors. In

this Chapter we give an overview of MF models and learning techniques.

2.1 A Basic Model

Let us begin with a basic MF model for explicit ratings. We denote a ratings dataset

D def
= {rui}, where rui is a rating value given by user u to an item i. We associate each user

u with a user-traits vector xu ∈ Rd, and each item i with an item-traits vector yi ∈ Rd,

where d is the dimensionality of the latent space. The dimensionality is typically much

lower than the number of users or items: d≪ min(N,M). Predicted ratings are obtained

using the rule:

r̂ui = x⊤
u yi. (2.1)

Let X ∈ Rd×N and Y ∈ Rd×M be the latent user and item factor matrices with columns

xu and yi representing the d-dimensional user-specific and item-specific latent factors of

user u and item i, respectively. The predictions matrix can be written as R̂ = X⊤Y.

Hence the name Matrix Factorization.

It is common practice to augment the model in (2.1) with additional terms to “clean”

biases and capture common patterns across users and items. We therefore extend (2.1)

with the more elaborate:

r̂ui = µ+ bu + bi + x⊤
u yi, (2.2)

where µ is a constant equivalent to the overall mean rating value, and bu and bi are scalars

that represent the item and user biases, respectively.
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A user bias models a user’s tendency to rate on a higher or lower scale than the

average rater, while the item bias captures the extent of the item popularity with regard

to the overall mean rating value. We denote by busers ∈ RN and bitems ∈ RM the vectors

consisting of all the users and items biases respectively – namely, bu is the u’th component

of busers, and bi is the i’th component of bitems.

The user’s trait vector xu represents the user’s preferences or “taste”. Similarly, the

item’s traits yi vector represent the item’s latent characteristics. The dot-product x⊤
u yi

is the personalization component, which captures user’s n affinity to item m. Note that

while µ is a constant that can be easily achieved by finding the mean rating, the other

terms (bu, bi, xu, and yi) are the hidden parameters that require learning. In fact, adding

µ is merely equivalent to centering the rating values.

A significant strength of MF models is their natural ability to easily augment them

with more parameters to capture additional known pattern in the dataset. For example,

in Chapter 3 we expand the basic model in (2.2) by including additional parameters to

account for taxonomy patterns and different types of temporal dynamics.

2.2 Learning Parameters

There are various techniques for training MF models. Generally a cost function such

as the Root Mean Squared Error (RMSE) is defined on the prediction error and opti-

mization is followed by a Stochastic Gradient Descent (SGD) or an Alternating Least

Squares (ALS) algorithm. ALS for MF models was introduced by Koren et al. in [14].

Alternatively, a Bayesian probabilistic model can be defined and inference can be done by

optimizing the posterior distribution of the parameters. In Section 2.2.1 we will explain

the former approach – namely, learning parameters by optimizing a squared loss cost

function. In Section 2.2.2, we will discuss the alternative Bayesian approach for learning

parameters, and show their equivalence in the case of Maximum A Posteriori (MAP)

estimation.
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2.2.1 Minimizing Squared Loss

We wish to derive a learning scheme for the model’s parameters in (2.2) by optimizing a

squared loss cost function. Given a dataset {rui} ∈ D of observed rating-tuples, our cost

function C is defined as:

C =
1

|D|
∑
rui∈D

(rui − r̂ui)
2 (2.3)

=
1

|D|
∑
rui∈D

(
rui − µ− bu − bi − x⊤

u yi

)2
,

where |D| is the number of tuples in D.

For the set of model parameters Θ = (busers,bitem,X,Y), we learn optimal values Θ̂

such that

Θ̂ = min
Θ

C (2.4)

= min
(busers,bitem,X,Y)

1

|D|
∑
rui∈D

(
rui − µ− bu − bi − x⊤

u yi

)2
.

We augment (2.4) with ridge regularization terms that penalize parameters’ magnitude

to avoid overfitting:

Θ̂ = min
Θ

1

|D|
∑
rui∈D

(
rmn − µ− bu − bi − x⊤

u yi

)2
(2.5)

+ λ
∑
u,i

(
∥bu∥2 + ∥bi∥2 + ∥xu∥2 + ∥yi∥2

)
,

where λ is a regularization coefficient that can be determined using cross-validation.

It is often useful to use different regularization coefficients for different parameters

(e.g., λbi for item bias parameters, and λxu for regularizing user trait vectors). This re-

quires non-trivial optimization algorithms for fitting a large number of model parameters.

We discuss this in Section 3.4.4.

Optimization of (2.5) is achieved either by Stochastic Gradient Descent (SGD) or

Alternating Least Squares (ALS) algorithms. Generally SGD is easier and faster to con-
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verge. It is also known to give slightly more accurate results [14]. When scaling is

considered, ALS has an advantage since it is embarrassingly parallel.

Stochastic Gradient Descent

Optimization of (2.5) using SGD is described in Algorithm 1. The examples in the dataset

D are iterated until convergence. At each point we update the user and item parameters

of the current example by making a small step to reduce the point-wise error eui, where

eui
def
= rui − r̂ui. Updates are taken using a learning rate γ. Similar to the regularization

coefficients, it is possible to use different update rates for different parameters. After

each iteration, the learning rate is deceased using exponential decay. In Algorithm 1, the

decay coefficient is 0.9. The decay coefficient and initial learning rates can be determined

via cross validation as discussed Section 3.4.4.

Algorithm 1 Learning with Stochastic Gradient Descent

Input: Dataset D
Output: Optimal parameters Θ

while not converged do
for each rui ∈ D do

xu ← xu + γ (euiyi − λxu)
yi ← yi + γ (euixu − λyi)
bu ← bu + γ (eui − λbu)
bi ← bi + γ (eui − λbi)

end for
γ ← 0.9γ

end while

Figure 2.1: Stochastic Gradient Descent (SGD) optimization of (2.5).

Alternating Least Squares

The optimization of (2.5) is non-convex in Θ (because of the x⊤
u yi term). However, it is

quadratic in any single parameter in Θ and thus convex in any single parameter (when

the other parameters are held fixed). This naturally calls for alternating optimization
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algorithms such as ALS in which we repeatedly iterate on the optimization parameters

and solve for each parameter independently. Each update improves the overall objective

and since our cost function is bounded (being non-negative) convergence is guaranteed.

Optimization of (2.5) using ALS is described in Algorithm 2. ALS employs different

update steps that depends on several data points and require a matrix inversion operation

(for the trait vectors update). For example, the user traits update step consists of a

summation of all the item trait vectors belonging to the items that were rated by that

user. The vectors are scaled by a factor that depends on the contribution of the other

parameters, and the vectors sum is scaled by an inverted matrix that balances between

the the regularization constant λ and the contribution of the vectors. The update step for

user biases follows a very similar formula, and the update steps for the items’ parameters

are symmetrical to the users’ update steps. Algorithm 2 is embarrassingly parallel - it

is parallelized by updating all the user parameters in parallel and then updating all the

item parameters in parallel.

2.2.2 A Bayesian Formulation

Matrix Factorization recommender systems can also give rise to forward generative Bayesian

formulation [15]. Figure 2.3 depicts a graphical model representation of a model very sim-

ilar to that of (2.5). Each user u is associated with a latent vector xu ∈ Rd and a user

bias bu, and each item i is associated with a latent vector yi ∈ Rd and an item bias bi.

We assume that a rating rui is determined by the model’s parameters and some random

noise:

rui = r̂ui + ϵ, (2.6)

where r̂ui = µ + bu + bi + x⊤
u yi and ϵ ∼ N (ϵ; 0, σ2

r). The likelihood of a single rating

observation is therefore given by:

p (rui|xu,yi, bu, bi) = N
(
rui; r̂ui, σ

2
r

)
, (2.7)
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Algorithm 2 Learning with Alternating Least Squares

Input: Dataset D
Output: Optimal parameters Θ

while not converged do

// Update Users:
for each u ∈ {1 . . . N} do

xu ←
( ∑
all i of u

yiy
⊤
i + λI

)−1 ∑
all i of u

(rui − µ− bi − bu)yi

bu ←
(
Mu + λ

)−1 ∑
all i of u

(
rui − µ− bi − x⊤

u yi

)
end for

// Update Items:
for each i ∈ {1 . . .M} do

yi ←
( ∑
all u of i

xux
⊤
u + λI

)−1 ∑
all u of i

(rui − µ− bi − bu)xu

bi ←
(
Ni + λ

)−1 ∑
all u of i

(
rui − µ− bu − x⊤

u yi

)
end for

end while

Figure 2.2: Alternating Least Squares (ALS) optimization of (2.5).

Mu - The number of items that were rated by user u.
Ni - The number of users that rated item i.

Assuming independent Gaussian priors on the parameters, we get the following posterior

density:
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and the log-posterior is:

log
(
X,Y,busers,bitems|D

)
=− 1

2σ2
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∑
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(rui − r̂ui)
2 (2.9)
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By defining λ = σ2
r
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= σ2
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= σ2
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= σ2
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σ2
bi

we get complete equivalence between the model

formulation of (2.9) and the model formulated in (2.5). Hence, minimization of the

squared loss is equivalent to maximization of the posterior distribution of the latent

parameters. From here, we can continue as before via SGD or ALS. Applying SGD is

equivalent to directly optimizing log-posterior density and ALS is equivalent to the well

known Expectation Maximization algorithm [16].

Figure 2.3: A graphical model representation of a basic recommender.

It is also possible to learn MF model using full inference methods which approximate
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the posterior distribution rather than maximizing it. The formulation can be similar

to the one shown here, but the learning algorithm may employ methods such as Gibbs

Sampling, Variational Bayes or Expectation Propagation. In the rest of this thesis we

focus on the models themselves and do not compare learning algorithm. We refer the

reader to Paquet et al. [17] for an example of an ordinal matrix factorization implemen-

tation with Gibbs Sampling and Variational Bayes inference, and to Stern et al. [18] for

an Expectation Propagation treatment to a MF model.
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III Modeling with Temporal Dynamics and Item Taxonomy

This chapter is mostly based on research that began during my internship in Yahoo!

Labs under the supervision of Yehuda Koren and Gideon Dror and continued afterwards.

The work was published in [2, 3, 4].

3.1 The KDD-Cup‘11 Data Challenge

This chapter is based on a dataset sampled from the Yahoo! Music database of ratings

collected during 1999-20101 which we released as part of the KDD-Cup‘11 challenge [2].

The challenge attracted thousands of participants and after the contest concluded the

dataset itself was adopted by many researchers for a variety of studies. The contest

offered two different tasks. The first track – Track1 focused on predicting users’ ratings.

The evaluation criterion was the Root Mean Squared Error (RMSE) between predicted

ratings and true ones. Track1 was similar in nature to the well known Netflix competition

[19] with the added complexity of items taxonomies and fine grained temporal resolution.

As organizers, we did not participate in the actual contest, but the model described

in this Chapter was designed under the same settings as the Track1 challenge. The best

result achieved by the winners – “National Taiwan University” was RMSE=21 [20]. The

model described here achieved RMSE=22.59 (see Section 3.5). However, there is a signifi-

cant difference between our solution and the solutions of the top participants: All the top

contest solutions employed ensembles that blend predictions from many recommendation

models. Blending solutions from a large number of simple predictors is a well known

method to reduce generalization error. We on the other hand, focused on building one

single model that will introduce new techniques for recommender systems. Specifically

we focused on modeling taxonomies and different temporal dynamics. Nevertheless, we

1 Publicly available at http://webscope.sandbox.yahoo.com/catalog.php?datatype=c
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were happy to discover that the model’s performance were competitive throughout the

competition – even as a single model, the final result achieved by our solution would have

been ranked on the 10th position of about 2100 active participants at the final stage of

the competition.

The second track – Track2 focused on a classification task: For each user in Track2

test-set six items were listed. Three out of these six items have never been rated by that

user, whereas the other three items were rated “highly” by the user, that is, a score of

80 or higher. The goal of Track2 was to differentiate high ratings from missing ones.

The evaluation criterion was the error rate – the fraction of wrong predictions. In the

remaining of this chapter, we will focus on Track1. The reader is referred to [2] for more

information about Track2.

3.2 The Yahoo! Music Dataset

The Yahoo! Music dataset comprises of 262,810,175 ratings of 624,961 music items by

1,000,990 users. The ratings include one-minute resolution timestamps, allowing refined

temporal analysis. Each item and each user has at least 20 ratings. The available ratings

were split into train, validation and test sets, such that the last 6 ratings of each user were

placed in the test set and the preceding 4 ratings were used in the validation set. The

train set consists of all earlier ratings (at least 10). The total sizes of the train, validation

and test sets were therefore 252,800,275, 4,003,960, and 6,005,940, respectively. Next, we

discuss the descriptive statistics of this dataset which motivate our model.

3.2.1 Characterizing the Yahoo! Music Dataset

Figure 3.1(a) depicts the weekly number of ratings and the weekly mean ratings score

vs. the number of weeks that passed since the launch of the service in 1999. The ratings

are integers between 0 and 100. Figure 3.1(b) depicts the distribution of ratings in the

train set using a logarithmic vertical scale. The vast majority of the ratings are multiples

of ten, and only a minuscule fraction are not. This mixture reflects the fact that several

interfaces (“widgets”) were used to rate the items, and different users had different rating
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Figure 3.1: The Yahoo! Music Dataset Statistics

“strategies”. The popularity of a widget used to enter ratings at a 1-to-5 star scale is

reflected by the dominance of the peaks at 0, 30, 50, 70 and 90 into which star ratings
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were translated.

An interesting aspect of the data is the fact that widgets have been altered throughout

the years. Figure 3.1(c) depicts the relative frequency of each of the three types of ratings.

In the first group are the ratings corresponding to the five dominant peaks of Figure 3.1(b)

(0, 30, 50, 70 and 90). The second group includes the remaining peaks (10, 20, 40, 60, 80

and 100), and the third group contains the remaining ratings (those not divisible by 10).

Abrupt changes in the relative frequencies of the three groups are clearly observed on

the 125-th week as well as on the 225-th week. These dates are also associated with a

dramatic change in mean rating, as can be observed in Figure 3.1(a).

We calculated the mean rating of each user, as well as the mean rating of each item.

Figure 3.1(d) depicts these two distributions. The location of the modes (at 89 and

50 respectively), as well as the variances of the two distributions are quite distinct. In

addition, the distribution of the mean user ratings is significantly more skewed.

Different rating behavior of users accounts for the apparent difference between the

distributions. It turns out that users who rate more items tend to have considerably

lower mean ratings. Figure 3.1(e) substantiates this effect. Users were binned according

to the number of items they rated, on a linear scale. The graph shows the median of

the mean ratings in each bin, as well as the interquartile range in each bin plotted as a

vertical line. One of the explanations for this effect is that “heavy” raters, those who

explore and rate tens of thousands of items, tend to rate more items that do not match

their own musical taste and preferences, and thus the rating scores tend to be lower.

A distinctive feature of this dataset is that user ratings are given to entities of four

different types: tracks, albums, artists, and genres. The majority of items (81.15%) are

tracks, followed by albums (14.23%), artists (4.46%) and genres (0.16%). The ratings

however, are not uniformly distributed: Only 46.85% of the ratings belong to tracks,

followed by 28.84% to artists, 19.01% to albums and 5.3% to genres. Moreover, these

proportions are strongly dependent on the number of ratings a user has entered. Heav-

ier raters naturally cover more of the numerous tracks, while the light raters mostly

concentrate on artists; the effect is shown in Figure 3.1(f). Thus, unlike the train set,
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the validation and test sets, which equally weight all users, are dominated by the many

light-raters and dedicate most of their ratings to artists rather than to tracks.

3.2.2 Items Taxonomy

All rated items are tied together within a taxonomy. That is, for a track we know the

identity of its album, performing artist and associated genres. Similarly we have artist

and genre annotation for the albums. There is no genre information for artists, as artists

may switch between many genres in their career. We denote by album(i) and artist(i) the

album and the artist of track i respectively. Similarly, for albums, we denote by artist(i)

the artist of album i. Tracks and albums in the Yahoo! Music dataset may belong to one

or more genres. We denote by genres(i) the set of genres of item i. Lastly, we denote

by type(i) the type of item i, with type(i) ∈ {track, album, artist, genre}. We show that

this taxonomy is particularly useful, due to the large number of items and the sparseness

of data per item (mostly attributed to “tracks” and “albums”).

Although this model focuses on the Yahoo! Music dataset, many of the character-

istics described here are not limited to this dataset. A hierarchy of item categories, for

example, is a very common feature relevant to most web recommender systems. Indeed,

e-commerce sites, e.g. those selling books, movies or electronics, tend to arrange their

items within a taxonomy. Our experience is that other recommender system datasets

(like the Netflix dataset [19]) also exhibit effects similar to those presented here. For

example, a non-stationary distribution of ratings as depicted in Figure 3.1(a) is a com-

mon phenomenon, which usually stems from the change in the supply of items, from

upgrades of web interfaces or from social, political or economic trends affecting the taste

and inclination of the users; see, e.g., [21]. On the other hand, we are not aware of

other recommender system datasets where items attached to different levels of the tax-

onomy can be rated. While this phenomenon is more relevant to music datasets, one

could reasonably imagine movie recommenders asking users to rate full genres, or book

recommenders asking users to rate book authors.
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3.3 Modeling Bias Patters

In the context of rating systems, biases model the portion of the observed signal that is

derived either solely by the user or solely by the rated item, but not by their interaction.

For example, a user bias may model a user’s tendency to rate higher or lower than

the average rater, while an item bias may capture the extent of the item’s popularity.

Figure 3.1(d) illustrates the fact that the mean ratings of various users and items are

quite diverse, suggesting the importance of modeling these two types of biases.

3.3.1 The Need for Biases

Since components of the user bias are independent of the item being rated, while com-

ponents in the item bias are independent of any user, they do not take part in modeling

personalization, e.g., modeling user musical taste. After all, ordering items by using bi-

ases only necessarily produces the same ranking for all users, hence personalization—the

cornerstone of recommendation systems—is not achieved at all.

Lack of personalization power should not be confused with lack of importance for

biases. There is plenty of evidence that much of the observed variability in rating signal

should be attributed to biases. Hence, properly modeling biases would effectively amount

to cleaning the data from signals unrelated to personalization purposes. This will allow

the personalization part of the model (e.g., matrix factorization), where users and items

do interact, to be applied to a signal more purely relevant for personalization. Perhaps

the best evidence is the heavily analyzed Netflix Prize dataset [19]. The total variance of

the ratings in this dataset is 1.276, corresponding to a Root Mean Squared Error (RMSE)

of 1.1296 by a constant predictor. Three years of multi-team concentrated efforts reduced

the RMSE to 0.8556, thereby leaving the unexplained ratings variance at 0.732. Hence

the fraction of explained variance (known as R2) is 42.6%, whereas the rest 57.4% of the

ratings variability is due to unmodeled effects (e.g., noise). Now, let us analyze how much

of the explained variance should be attributed to biases, unrelated to personalization.

The best published pure bias model [22] yields an RMSE=0.9278, which is equivalent

to reducing the variance to 0.861 thereby explaining 32.5% of the observed variance.
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This (quite surprisingly) means that the vast majority of the 42.6% explainable variance

in the Netflix dataset, should be attributed to user and item biases having nothing to

do with personalization. Only about 10% of the observed rating variance comes from

effects genuinely related to personalization. In fact, as we will see later (Section 3.5),

our experience with the music dataset similarly indicates the importance role biases play.

Here the total variance of the test dataset is 1084.5 (reflecting the 0-100 rating scale).

Our best model could reduce this variance to around 510.3 (R2 = 52.9%). Out of this

52.9% explained variance, once again the vast majority (41.4%) is attributed to pure

biases, leaving about 11.5% to be explained by personalization effects. Hence, the big

importance one should put on well modeling biases.

We present a rich model for both the item and user biases, which accounts for the

item taxonomy, user rating sessions, and items’ temporal dynamics. In the following we

will gradually develop the basic user and item biases into a a rich model that accounts

for a variety of patterns in the dataset.

3.3.2 A Basic Bias Model

The most basic bias model captures the main effects associated with users and items

[23]. We start with the basic biases of (2.2). In order to focus on the biases and measure

their contribution, we isolate the biases by removing the user and item trait vectors (the

personalization component). This gives rise to the model

bui = µ+ bu + bi (3.1)

Since components of the user bias are independent of the item being rated, while

components in the item bias are independent of any user, they do not take part in

modeling personalization, e.g., modeling the musical taste of a user. After all, ordering

items by using only a bias model (3.1) necessarily produces the same ranking for all users,

hence personalization—the cornerstone of recommendation systems—is not achieved at

all. Yet, there is plenty of evidence that much of the observed variability of ratings

is attributed to biases. Hence, properly modeling biases would effectively amount to
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cleaning the data from patterns unrelated to personalization purposes. This will allow

the personalization part of the model (e.g., matrix factorization) to be applied to signals

much more relevant to personalization, where users and items do interact.

We extend the model (3.1) and present a rich model for both the item and user

biases, which accounts for the item taxonomy, user rating sessions, and items’ temporal

dynamics. We will gradually add components to the user and item biases to capture

additional patterns. Let us denote by b0u and b0i our initial (stage 0) user and item biases

respectively. Namely b0u is simply bu and b0i is simply bi.

3.3.3 Taxonomy biases

We start by letting item biases share components for items linked by the taxonomy. For

example, tracks in a good album may all be rated somewhat higher than the average, or

a popular artist may have all her songs rated a bit higher than the average. We therefore

add shared bias parameters to different items with a common ancestor in the taxonomy

hierarchy. We expand the item bias model for tracks as follows

b1i = bi + balbum(i) + bartist(i) +
1

|genres(i)|
∑

g∈genres(i)

bg, (3.2)

where b1i is our new item bias. Here, the total bias associated with a track i sums both its

own specific bias modifier (bi), together with the bias associated with its album (album(i))

and its artist (artist(i)), and the mean bias associated with its genres( 1
|genres|

∑
g∈G bg).

Similarly for each album we expand the bias model as follows

b1i = bi + bartist(i) +
1

|genres(i)|
∑

g∈genres(i)

bg (3.3)

One could view these extensions as a gradual accumulation of the biases. For example,

when modeling the bias of album i, the start point is bartist(i) +
1

|genres(i)|
∑

g∈genres(i) bg,

and then bi adds a residual correction on top of this start point. Similarly, when i is a

track another track-specific correction is added on top of the above. As bias estimates

for tracks and albums are less reliable, such a gradual estimation allows basing them on
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more robust initial values. Note that such a framework not only relates items to their

taxonomy ancestors, but (indirectly) also to other related items in the taxonomy. For

example, a track will get related to all other tracks in its album, and to lesser extent

to all other tracks by the same artist. Also, note that while artists and genres are less

susceptible to the sparsity problem, they also benefit from this model as ratings to tracks

and albums also influence the biases of their corresponding artist and genre.

The taxonomy of items is also useful for expanding the user bias model. For example,

a user may tend to rate artists or genres higher than songs. Therefore, given an item i

the user bias is

b1u = bu + bu,type(i) (3.4)

where bu is the user specific bias component and bu,type(i) is a shared component of all the

ratings by user u to items of type type(i).

3.3.4 User Activity Sessions

Ratings are marked by a date and and timestamp with resolution down to minutes. We

used this information for modeling temporal dynamics of both items and users. We start

by modeling user listening sessions. It is common for users to listen to many songs and

rate them one after the other. A rating session is therefore a set of consecutive ratings

without an extended time gap between them. In our implementation user sessions are

separated by at least 5 hours of idle gap (no rating activity). There are many psychological

phenomena that affect ratings grouped in a single session. These effects are captured by

user session biases.

One example is the fact that the order in which the songs were listened by the user

might determine the ratings scores, a phenomenon known as the drifting effect [24]. Users

tend to rate items in the context of previous items they rated. If the first song a user hears

is particularly good, the following items are likely to be rated by that user lower than

the first song. Similarly, if the user did not enjoy the first song, the ratings of subsequent

songs may shift upwards. The first song therefore may serve as a reference rating to all

the following ratings. However, with no absolute reference for the first rating, different
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users begin rating at different scales and some users tend to give it a default rating (e.g.,

70 or 50). Consequently, all the following ratings in that same session may be biased

higher or lower according to the first rating. Another source for session biases is the

mood of the user. A user may be in a good/bad mood that may affect her ratings within

a particular session. It is also common to listen to similar songs in the same session, and

thus their ratings become similar.
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Figure 3.2: The difference between the mean rating of a session to the
mean rating of the corresponding user as a function of session length,
averaged over all sessions

The Yahoo! Music dataset exhibits another form of session bias, where longer sessions

tend to have a lower mean rating. This is not surprising, given the lower average rating

for “heavier” users, as summarized in Figure 3.1(e). But more importantly, this claim

is correct even on a per-user basis, namely for each user longer sessions tend to have a

significantly lower mean rating. To show this we calculated for each session the difference,

∆, between the mean rating of the session to the mean rating of the corresponding user.

Averaging ∆ over all sessions and plotting it as a function of the sessions’ length results

in Figure 3.2. The error-bars represent a 0.95 confidence interval of the estimate of the

mean value of ∆ for each length. The latter was binned on a logarithmic scale. The

figure shows that long sessions comprising 100 ratings or more are on average about 2

points lower than the mean rating of the user, whereas the shortest sessions, comprising
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a single rating, are on average 6 points higher than the mean rating of the user.

To take such effects into account, we added a session bias term to our user bias model.

We denote by session(u, i) the rating session of the rating rui, and expand our user bias

model to include session biases

b2u = b1u + bu,session(i,u) (3.5)

The session bias parameter bu,session(i,u) models the bias component common to all ratings

of u in the same session she rated i.

3.3.5 Item Temporal Biases

The popularity of songs may change dramatically over time. While users’ temporal

dynamics seem to follow abrupt changes across sessions, items’ temporal dynamics are

much smoother and slower, thus calling for a different modeling approach. We follow

here an approach suggested by Piotte and Chabbert [25].

Given item i and the time t since i’s first rating, we define a time dependent item

bias as a linear combination of n temporal basis functions f(t) = (f1(t), f2(t), ...fn(t))
⊤

and expand the item bias component to be

b2i = b1i + c⊤i f(t), (3.6)

where ci ∈ Rn is an item specific vector of coefficients.

We learned both f(t) and ci using SGD minimization of a squared loss cost function in

a similar fashion to all other model components; see Section 3.4.3. In practice, a 2-week

coarse time resolution is sufficient for the rather slow changing item temporal dynamics,

therefore the basis functions are only estimated at a small number of points and can

be easily learned. This process does not guarantee an orthogonal or normalized basis,

however it finds a basis that fits the patterns seen in the dataset.

We have found that a basis of 4 functions is sufficient to represent the temporal

dynamics of item biases in the Yahoo! Music dataset. Figure 3.3 depicts the learned basis
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Figure 3.3: Items temporal basis functions {fi(t)}4i=1 vs. time since an
item’s first rating measured in weeks

functions {fi(t)}4i=1. Since the items’ coefficients can be be either positive or negative,

it is hard to give a clear interpretation to any specific basis function. However, an

interesting observation is that basis functions seem to have high gradients (fluctuations)

right after an item was released, indicating more dynamic temporal effects in this time

period. It is also interesting to note that after a long time period (above 360 weeks), the

temporal basis functions converge into relatively steady values. This indicates that at a

longer perspective, items seem to have either a positive or a negative bias, with much

less temporal dynamics.

3.3.6 A Full Bias Model

To summarize, our complete bias model, including both enhanced user and item biases

is (for a track i)

bui =µ+ bu,type(i) + bu,session(i,u) + bi + balbum(i)

+ bartist(i) +
1

|genres(i)|
∑

g∈genres(i)

bg + c⊤i f(tui) (3.7)

where tui is the time elapsed from i’s first rating till u’s rating of i.

Learning the biases is performed together with the other model components by SGD

as described in Section 3.4.3. The extended bias model dramatically reduced the RMSE

even before any personalization components were added into the model (see results in
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Section 3.5). Biases were able to absorb much of the effects irrelevant to personalization.

Such a “cleaning” proved to be a key for accurately modeling personalization in later

stages.

3.4 Modeling Personalization

We start with a basic personalization component similar to (2.2): Each user u is associated

with a user-factor vector xu ∈ Rd, and each item i with an item-factor vector yi ∈ Rd.

Predictions are done using the rule

r̂ui = bui + x⊤
u yi (3.8)

where bui is the bias model (3.7), and x⊤
u yi is the personalization model which captures

user’s u affinity to item i. In the following section we expand this basic personalization

model to encompass more patterns observed in the data.

3.4.1 Utilizing Taxonomy

Musical artists often have a distinct style that can be recognized in all their songs. Simi-

larly, artists style can be recognized across different albums of the same artist. Therefore,

we introduce shared factor components to reflect the affinity of items linked by the tax-

onomy. Specifically, for each artist and album, we employ a factor vector vi ∈ Rd (in

addition to also using the aforementioned yi). We expand our item representation for

tracks to explicitly tie tracks linked by the taxonomy

ỹi
def
= yi + valbum(i) + vartist(i) (3.9)

Therefore, yi represents the difference of a specific track from the common representation

of all other related tracks, which is especially beneficial when dealing with less popular

items.
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Similarly, we expand our item representation for albums to be

ỹi
def
= yi + vartist(i) (3.10)

One may also add shared factor parameters for tracks and albums sharing the same

genre, similarly to the way genres were exploited for enhancing biases. However, our

experiments did not show an RMSE improvement by incorporating shared genre infor-

mation. This indicates that after exploiting the shared information in albums and artists,

the remaining information shared by common items of the same genre is limited.

3.4.2 Personalizing Listening Sessions

As discussed earlier, much of the observed changes in user behavior are local to a ses-

sion and unrelated to longer term trends. Thus, after obtaining a fully trained model

(hereinafter, “Phase I”) we perform a second phase of training, which isolates rating com-

ponents attributed to session-limited phenomena. In this second phase, when we reach

each user session, we try to absorb any session specific signal in separated component of

the user factor. To this end we expand the user representation into

x̃u = xu + xu,session (3.11)

where the user representation x̃u consists of both the original user factor xu and and

the session factor vector xu,session. We learn xu,session by fixing all other parameters and

making a few (e.g., 3) SGD iterations only on the ratings given in the current session

in order to learn xu,session. After these iterations, we are able to absorb much of the

temporary per-session user behavior into xu,session, which is not explained by the model

learned in Phase I. We then move to a final relaxation step, where we run one more

iteration over all ratings in the same session, now allowing all other model parameters

to change and shed away any per session specific characteristics. Since xu,session already

captures much of the per-session effects of the user factor, the other model parameters

adjust themselves accordingly and capture possible small changes since the previous rating
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session. After this relaxation step, we reset xu,session to zero, and move on to the next

session, repeating the above process.

Our approach is related to [21], which has also employed day specific factor vectors

for each user. However, there are two notable differences. First, we apply a more refined

session analysis rather than working at a coarser day resolution. Second, we employ

a much more memory efficient method: since we discard the per session components

xu,session after iterating through each session, there is no need to store session vectors for

every session in the dataset. At the time of prediction, we only use the last session vector.

We therefore avoid the high memory consumption that occurs in previous approaches.

For example, we identified 13,844,810 ratings sessions in the Yahoo! Music dataset (for

all users). Using a 100-D factorization model with single precision floating point numbers

(4 bytes), it would have taken more than 5.5GB of memory to store all the user session

factors, significantly larger than the 400MB required to store only a single session factor

for each user.

3.4.3 Stochastic Gradient Descent (SGD) Optimization

Our final prediction model takes the following form

r̂ui = bui + x̃⊤
u ỹi (3.12)

where bui is the detailed bias model as in (3.7), ỹi is our enhanced item factor represen-

tation as described in (3.9) and (3.10), and x̃u is defined in (3.11).

As previously alluded, learning proceeds by stochastic gradient descent (SGD), where

all learned parameters are regularized with ridge (l2) regularization. SGD visits the

training examples one-by-one, and for each example updates its corresponding model

parameters. The update steps are derived in a similar fashion to the update steps in Sec-

tion 2.2. More specifically, for training example (u, i), SGD lowers the squared prediction

error e2ui = (rui − r̂ui)
2 by updating each individual parameter θ by

∆θ = −γ ∂e
2
ui

∂θ
− λθ = 2ηeui

∂r̂ui
∂θ
− λθ, (3.13)
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where γ is the learning rate and λ is the regularization rate.

The Yahoo! Music dataset spans over a very long time period (a decade). In such a

long period musical taste of users slowly drifts. We therefore expect model parameters

to change with time. We exploit the fact that the SGD optimization procedure gradually

updates the model parameters while visiting training examples one by one. It is a common

practice in online learning to order training examples by their time, so when the model

training is complete, the learned parameters reflect the latest time point, which is most

relevant to the test period. Since we perform a batch learning including several sweeps

through the dataset, we need to enhance this simple technique.

We loop through the data in a cyclic manner: we visit user-by-user, whereas for each

user first we sweep forward from the earliest rating to the latest one, and then (after also

visiting all other users) we sweep backward from the latest rating to the earliest one, and

so on. This way, we avoid the otherwise discontinuous jump from the latest rating to the

first one when starting a new iteration. This allows parameters to slowly drift with time

as the user changes her taste. The process always terminates with a forward iteration

ending at the latest rating.

3.4.4 Tuning Meta-parameters with The Nelder-Mead Algorithm

For each type of learned parameter we set a distinct learning rate (aka, step size) and

regularization rate (aka, weight decay). This grants us the flexibility to tune learning

rates such that, e.g., parameters that appear more often in a model are learned more

slowly (and thus more accurately). Similarly, the various regularization coefficients allow

assuming different scales for different types of parameters.

We have used the validation dataset to find proper values for these meta-parameters.

Optimization of meta-parameters is a costly procedure, since we know very little on

the behavior of the objective function, and because every evaluation requires running

the SGD algorithm on the entire dataset. The fact that we have multiple learning and

regularization parameters further complicates the matter. For optimizing more than 20

meta-parameters we resorted to the Nelder-Mead simplex search algorithm [26]. Though
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not guaranteed to converge to the global minimum [27], Nelder-Mead search is a widely

used algorithm with excellent results on real world scenarios [25, 28]. To speed up the

search we implemented a parallel version of the algorithm as in [29]. We consider such

an automated meta-parameters optimization process as key ingredient in enabling the

development of a rich and flexible model.

3.5 Evaluation

We learned our model on the train dataset using SGD with 20 iterations. We used the val-

idation dataset for early termination and for setting model-parameters; see Section 3.4.4.

We then tested the results in terms of RMSE as described here.

We measured the RMSE of our predictions as we gradually add components to the

bias models, and then as we gradually add components to the personalization model.

This approach allows isolating the contribution of each component in the model. The

results are presented in Table 3.1.

The most basic model is a constant predictor. In the case of the RMSE cost function,

the optimal constant predictor would be the mean train rating, r̂ui = µ; see row 1 of

the table. In row 2 we present the basic bias model r̂ui = µ + bi + bu (3.1) (b0u and

b0i ). In row 3 we report the results after expanding the item and user biases to include

also taxonomy terms (b1u and b1i ), which mitigate data sparseness by capturing relations

between items of the same taxonomy; see Section 3.3.3. We then added the user session

bias of Section 3.3.4 (b2u). This gave a significant reduction in terms of RMSE as reported

in row 4. We believe that modeling session biases in users’ ratings is key in explaining

ratings behavior in domains like music in which users evaluate and rate multiple items at

short time frames. In row 5 we add the item temporal bias from Section 3.3.5 (b2i ). This

term captures changes in item biases that occur over the lifespan of items since their first

ratings. This bias is especially useful in domains in which item popularity easily changes

over time such as in music, or datasets in which the ratings history is long. The result

in row 5 reflects the RMSE of our final bias model (defined in Section 3.3.6), when no

personalization is yet in place.

32



# Model Name RMSE

1 Mean Score 38.0617
2 Items and Users Bias 26.8561
3 Taxonomy Bias 26.2553
4 User Sessions Bias 25.3901
5 Items Temporal Dynamics Bias 25.2095

6 MF 22.9533
7 Taxonomy 22.7906
8 Final 22.5918

Table 3.1: Root Mean Squared Error (RMSE) of the evolving model.
RMSE reduces while adding model components.

We move on to personalized models, which utilize a matrix factorization component

with 50 dimensions. The model of (3.8) yields RMSE of 22.9235 (row 6). By adding

taxonomy terms to the item factors, we were able to reduce this result to 22.8254 (row

7). Finally, in row 8 we report the full prediction model including user session factors (as

in Section 3.4.2). The relatively large drop in RMSE, even when the model is already

fully developed, highlights the significance of temporal dynamics at the user factor level.

Let us consider the effect of the taxonomy on the RMSE results of each item type.

Table 3.2 breaks down the RMSE results per item type of the three personalized models.

It is clear that incorporating the taxonomy is most helpful for the sparsely rated tracks

and albums. It is much less helpful for artists, and becomes counter-productive for the

densely rated genres.

We further investigate the performance of our model as more factors are added. Fig-

ure 3.4(b) depicts the RMSE vs. factors dimensionality. Since we carefully tune the

regularization terms, there is no overfitting even as the dimensionality reaches 500. How-

ever, there are clearly diminishing returns of increasing dimensionality, with almost no

improvement over 100 dimensions. Note that the reduction in RMSE given by the tax-

onomy and session factors remains steady even as the dimensionality increases.

Lastly, we investigate the relation of the test RMSE to the time distance from the

train set. Figure 3.4(b) depicts the mean RMSE and the elapsed time for each bin.

Ratings with a zero elapsed time, which mostly correspond to user sessions artificially

split between train and test set, were excluded from this analysis, as they are not relevant
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Track Album Artist Genre
%Test 28.7% 11.01% 51.61% 8.68%

MF 27.1668 24.5203 20.9815 15.7887
Taxonomy 26.8899 24.3531 20.8766 15.7965
Final 26.85 24.1854 20.566 15.4801

Table 3.2: RMSE per item type for the three personalized models. We
also report the fraction of each item type in the test dataset.
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Figure 3.4: Breaking down RMSE of the final model

for any real recommender system. The plateau on the left part of the figure suggests that

the performance of the model is stable for about three months since the time it was

trained, whereupon the RMSE of its predictions gradually increases. Thus the model

needs updating only once in a month or so in order to exhibit uniform performance.

3.5.1 Visualizing the Latent Space

Figure 3.5 depicts the item factor vectors for some of the more popular artists and genres

based on a 2-D model (d = 2). We see that most items are located within a 90◦ sector.

At the right hand side, we see a concentration of Hip-Hop, Rap and R&B artists and

genres, while various Rock groups and sub-genres of Rock are located on the left hand

side of the sector. The fact that the two groups are orthogonal, means that there is little

correlation between people who listen to Hip-Hop and people who listen to Rock. In

other words, a user’s tendency towards Hip-Hop does not convey any information about
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her taste in Rock. These two genres (Hip-Hop and Rock) are the most popular genres in

our dataset. Therefore, a 2-D system places them as the main two extremes. Figure 3.5

emphasizes the need for more than 2 dimensions when modeling music preferences. Since

the two dimensions represent Rock and Hip-Hop, there are no dimensions left for other

genres. Therefore they are constrained to lie between these two groups. We thus see a

concentration of Pop genres and artists at an angle that is between Rock and Hip-Hop.

Similarly genres such as Jazz, Electronic/Dance, Latin and an artist such as Bob Mar-

ley (Reggae) are placed somewhere between Hip-Hop and Rock. In higher dimensional

factorization models, all these items become mostly orthogonal to each another.

The norm of an item vector determines how suitable that item would be to a user

in the same direction. For example, the vector for the Industrial Rock group Nine Inch

Nails is at an angle between Nirvana and Metallica, but with a much higher magnitude.

However, the latter two have much larger item biases. This means that while Nirvana

and Metallica tend to get higher ratings in general (as indicated by their higher item

biases), Nine Inch Nails will get a higher inner product values with user vectors in its

direction. Therefore, the ratings for Nine Inch Nails are more dependent on a user’s

musical taste (the personalization component), whereas Metallica and Nirvana are more

popular in general.

As we noted above, most of the items are placed within a 90◦ sector. We further

verified this by computing the inner product between all possible item pairs when using

50-D factor vectors and found that 96.36% of them were nonnegative. Hence, negative

correlations between items (“users who like an item dislike another one”) are rare. This

indicates that in music, personalization is mostly based on modeling patterns of positive

correlations between items. The prominence of this finding prompted us to compare it to

other domains. We repeated the same experiment using the Netflix movies dataset [19].

We have found that negative correlations between movies are more likely than in music.

While the majority of inner products between movie factor vectors are nonnegative, a

non-negligible fraction (32.35%) is of negative inner products.
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Music dataset are embedded into a 2-dimensional. The open cone sug-
gests the region of highly preferred items for the user (her logo is at the
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and similar items from Hip-Hop and similar items. The low dimension-
ality (which is required for a visualization), causes a small number of
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IV Efficient Retrieval of Recommendations

Real world large scale MF models run into a difficulty rarely discussed in the academic

literature – the computational cost of finding the top-rated items to recommend. This

task involves finding the maximum dot-product for a given user vector xu over a set of

items S such that:

x⊤
u yi = max

yi∈S
x⊤
u yi. (4.1)

Surprisingly, we did not find any technique to efficiently solve this problem; a linear search

over the set of points appears to be the state-of-the-art. Moreover, the number of users

is usually very high (typically higher than the number of items) and each user requires

a new search over the items. A very simplistic visualization of this task is depicted in

Figure 3.5 from Chapter 3. For the given user, the best recommendations (in this case

songs) lie within the open cone around the user vector (maximizing the cos (θxu,yi
) term)

and are as far as possible from the origin (maximizing the ∥qi∥ term).

The problem of efficient Retrieval of Recommendations (RoR) in collaborative filtering

has been previously studied for algorithms different from MF. Large-scale recommender

systems use techniques like min-hash clustering of users, probabilistic latent semantic

indexing, and co-visitation counts to achieve fair scalability [30]. A more recent method

based on multidimensional scaling embeds both the users and items in a common Eu-

clidean space [31], reducing the retrieval task to the problem of k-nearest-neighbor search

in Euclidean space. The plethora of algorithms for nearest-neighbor search can then be

used for efficient RoR. While these methods show significant improvements in retrieval

times, they deviate from the more accurate MF framework. The algorithms described

in this Chapter were, at the time of publication, the first efficient retrieval algorithms

in the MF framework. We address the problem of RoR in a MF framework and present

two algorithms (one exact and one approximate) to solve (4.1) for multiple queries in a
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sub-linear time complexity.

The main contributions on this chapter are:

• A simple branch-and-bound algorithm on a tree index with a novel bound to solve

the exact problem.

• An approximate scheme that pre-computes solutions for certain representative queries

and uses these solutions for the new queries.

• A theoretical error bound which determines the quality of the approximate results

and used to control the approximation by adaptively rejecting overly (theoretically)

inaccurate solutions.

Chapter 4 is based on our publication from [5].

4.1 Problem Definition

In MF models, the predicted rating of a user for an item boils down to a dot-product

between two vectors representing the user and the item. Constructing the entire#USERS

× #ITEMS preference matrix (or even just for the top-rated items for every user) requires

heavy computational (and space) resources. For example, the Yahoo! Music dataset

(described in Section3.2) has 1,000,990 users and 624,961 music items. Generating the

optimal recommendations in this dataset requires over 6×1012 dot-products using a naive

algorithm. A 50-dimensional model required 134 hours (over 5 days) to find optimal

recommendations for all the users1. In terms of storage, saving the whole preference

matrix requires over 5TB of disk-space. Moreover, this dataset of 106 users is just a small

sample of the actual Yahoo! Music dataset and the problem worsens with larger numbers.

RoR in a trained MF model involves finding the set of K items for a user u with

maximum predicted ratings. Equation 2.2 in Section 2.1 implies that for a given user u,

ordering the items is independent of µ and the user’s bias bu. Thus, we can ignore these

parameters without affecting the preferred ordering of the items and obtain an effective

1 Using an Intel Xeon (E7320) CPU running at 2.13GHz.
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rating:

r̃ui = bi + x⊤
u yi. (4.2)

It is important to note that this is only applicable during the RoR phase (after the

training). Ignoring these components during the training will inevitably result in poor

accuracy.

By appending the item bias to the item vector, the effective rating (equation 4.2)

reduces to a simple dot-product:

r̃ui = x̃⊤
u ỹi = ∥x̃u∥ ∥ỹi∥ cos (θx̃u,ỹi

) , (4.3)

where x̃u, ỹi ∈ Rd+1 defined as x̃u = [x⊤
u 1]⊤, ỹi = [t⊤i bi]

⊤, and θx̃u,ỹi
is the angle between

x̃u and ỹi at the origin.

Equation 4.3 implies that for a given user vector x̃u, the items ordering is independent

of the norm ∥x̃u∥ and only depends on the user vector through the angle θx̃u,ỹi . Hence,

without loss of generality, we normalize the user vectors to a unit vector x̄u = x̃u/ ∥x̃u∥

to further simplify equation 4.3 to:

r̄ui = x̄⊤
u ỹi = ∥ỹi∥ cos (θp̄u,q̃i) . (4.4)

Note that while we normalize the concatenated user vectors, the concatenated item vec-

tors can not be normalized without loss of accuracy.

For readability purposes, in the remaining of this chapter we will denote the concate-

nated user vector x̄ and item vector ỹ as xu and yi respectively, and the effective rating

for the task of retrieval as rui. We will keep to this notation from here onwards through

the rest of Chapter 4. RoR reduces to the following task: Given a user query xu, we want

to find an item yi ∈ S such that:

x⊤
u yi = max

y∈S
x⊤
u y (4.5)

Hence the RoR task is equivalent to the problem of finding the best-match for a query
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xu in a set of points with respect to the dot-product.

As shown in Chapter 3, it is possible to incorporate additional information such

as taxonomy and temporal dynamics by adding auxiliary vectors to the item and user

vectors. These additional components are usually additive and can be collapsed to the

form of (4.4) using a very similar process. Without loss of generality we will therefore

only discuss the basic model (equation 4.5). The extension to more complex models is

usually trivial and in fact, we do use the complex model presented in Chapter 3 in the

evaluation stage of this chapter.

4.2 Nearest Neighbor Search Algorithms

Efficiently finding the best match using the dot-product (Equation 4.5) appears to be

very similar to much existing work in the literature. Finding the best match with respect

to the Euclidean (or more generally lp) distance is the widely studied problem of nearest-

neighbor search in metric spaces [32]. The nearest-neighbor search problem (in a metric

space) can be solved approximately with the popular Locality-sensitive hashing (LSH)

method [33]. LSH can be applied to other forms of similarity functions (as opposed to the

distance as a dissimilarity function) like the cosine similarity [34]. Next, we investigate the

main differences between the problem stated in equation 4.5 and these previous problems.

4.2.1 Nearest-neighbor Search in a Metric Space

The problem of finding the nearest-neighbor in this setting is to find a point yi ∈ S for

a query xu such that:

yi = argmin
y∈S
∥xu − y∥2 = argmax

y∈S

(
x⊤
u y − ∥y∥

2 /2
)

̸= argmax
y∈S

x⊤
u y (unless ∥y∥2 = const ∀y ∈ S).

Hence, if all the points in S are normalized to the same length, then the problem of

finding the best match with respect to the dot-product is equivalent to the problem of

nearest-neighbor search in any metric space. However, without this restriction, the two
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problems can yield very different answers.

4.2.2 Cosine similarity

Retrieving the best match with respect to the cosine similarity requires finding a point

yi ∈ S for a query xu such that:

yi = argmax
y∈S

x⊤
u y

∥xu∥ ∥y∥
= argmax

y∈S

x⊤
u y

∥y∥
̸= argmax

y∈S
x⊤
u y (unless ∥y∥ = const ∀y ∈ S).

As in the previous case, the best match with respect to the cosine similarity is identical

the best match with respect to the dot-product only if all the points in the set S are

normalized to have the same length (norm). Under general conditions, the best matches

with these two similarity functions can be very different.

4.2.3 Locality Sensitive Hashing (LSH)

LSH involves constructing hashing functions h which satisfy the following – for any pair

of points x,y ∈ RD:

Pr[h(x) = h(y)] = sim(x,y), (4.6)

where sim(x,y) ∈ [0, 1] is the similarity function of interest. For our situation, we

can scale our dataset such that ∀ y ∈ S, ∥y∥ ≤ 1. Note that this normalization is

different than the normalization mentioned before. Here the lengths of all the vectors are

normalized to be less than equal to one, but not equal to each other. Let us also assume

that the data is in the first quadrant (such as in non-negative matrix factorization models

[35]). In that case, sim(x,y) = x⊤y ∈ [0, 1] is our similarity function of interest.

For any similarity function to admit a locality sensitive hash function family (as

defined in equation 4.6), the distance function d(x,y) = 1 − sim(x,y) must satisfy the

triangle inequality (Lemma 1 in [34]). However, the distance function d(x,y) = 1− x⊤y

does not satisfy the triangle inequality. Hence, LSH cannot be applied to the dot-product

similarity function even under restrictive assumptions where we assume that all the data
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lies in the first quadrant.

4.2.4 Maximum Dot-products

Unlike the distance functions in metric space, dot-products do not induce any form of

triangle inequality (even under some assumptions as mentioned above). This lack of any

induced triangle inequality causes the similarity function to have no admissible family of

locality sensitive hashing functions. Any modification to the similarity function to con-

form to widely used similarity functions (like Euclidean distance or Cosine-similarity) will

create inaccurate results. Moreover, dot-products lack the basic property of coincidence

– the self similarity is highest. For example, the Euclidean distance of a point to itself is

0; the cosine-similarity of a point to itself is 1 (highest). But, the dot-product of a point

x to itself is ∥x∥2, which may be high or low depending on the value of ∥x∥. There can

possibly be many other points yi (i = 1, 2, . . .) in the set such that x⊤yi > ∥x∥2. There-

fore without any assumptions, the problem of obtaining the best match with respect to

the dot-product is inherently harder than the previously addressed similar problems.

4.3 Fast Exact Retrieval Using Metric Trees

In this section, we describe metric trees and develop a novel bound to use with a simple

branch-and-bound algorithm to provide the first method to efficiently obtain the exact

best-matches with respect to the dot-products.

4.3.1 Metric Trees

Metric trees [36] are binary space-partitioning trees that are widely used for the task of

indexing datasets in Euclidean spaces. The space is partitioned into overlapping hyper-

spheres (balls) containing the points (figure 4.1). We use a simple metric tree construction

heuristic that tries to approximately pick a pair of pivot points farthest apart from each

other [37] and splits the data by assigning points to their closest pivot. The tree T is

built hierarchically and each node in the tree is defined by the mean of the data in that

node (T.center) and the radius of the ball around the mean enclosing the points in the
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1

Figure 4.1: Metric-trees – note that while all the points in a child node
lie also inside the parent ball, the child ball itself does not necessarily lie
within the parent ball.

node (T.radius). The tree has leaves of size at most N0. The splitting and the recursive

tree construction algorithms are presented in Algorithms 3 & 4.

The tree is space efficient since every node only stores the indexes of the item vectors

instead of the item vectors themselves. Hence the matrix for the items is never duplicated.

Another implementation optimization is that the vectors in the items’ matrix are sorted

in place (during the tree construction) such that all the items in the same node are

arranged serially in the matrix. This avoids random memory access while accessing all

the items in the same leaf node.

4.3.2 Branch-and-bound Algorithm

Metric trees are used for efficient nearest neighbor search and are fairly scalable in mod-

erately high dimensions [37, 38]. The search employs a depth-first branch-and-bound

algorithm. A nearest-neighbor query is answered by traversing the tree in a depth-first

manner– going down the node closer to the query first and bounding the minimum pos-

sible distance to items in other branches with the triangle-inequality. If this branch is

farther away than the current neighbor candidate, the branch is removed from computa-

tion.

Since the triangle inequality does not hold for the dot-product, we present a novel an-

alytical upper bound for the maximum possible dot-product of a user vectors with points

(in this case, items) in a ball. We then employ a similar branch-and-bound algorithm
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Algorithm 3 MakeMetricTreeSplit(Data S)

Pick a random point v ∈ S
c← argmaxyi∈S ∥v − yi∥
d← argmaxyi∈S ∥c− yi∥
w← (d− c)

b← −1
2

(
∥c∥2 − ∥d∥2

)
return (w, b)

Algorithm 4 MakeMetricTree(Set of items S)

Input – Set S
Output – Tree Q
Q.S ← S
Q.center← mean(S)
Q.radius← maxyi∈S ∥T.center− yi∥
if |S| ≤ N0 then

// Leaf node
return Q

else
// else split the set
(w, b)← MakeMetricTreeSplit(S)
Sl ← {yi ∈ S : w⊤yi + b ≤ 0}
Sr ← S \ Sl

Q.left← MakeMetricTree(Sl)
Q.right← MakeMetricTree(Sr)
return Q

end if

Figure 4.2: Metric-tree Construction: The object Q.S denotes the set of
items in the node Q, Q.center denotes the Euclidean mean of the items in
the node Q and Q.radius denotes the minimum radius of the ball centered
around Q.center enclosing all the items in the node Q.

for the purpose of searching for the K-highest dot-products (as opposed to the minimum

pairwise distance in K-nearest-neighbor search).

Bounding Maximal Inner-product

The following explanation is illustrated in Figure 4.3. Let Br
yc

be the ball of items centered

around yc with radius r. Suppose that y∗ is the best possible recommendation in the ball

Br
yc

for the user represented by the vector xu, and r∗ be the Euclidean distance between

the ball center yc and the best possible recommendation y∗ (by definition, r∗ ≤ r). Let
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Figure 4.3: Bounding with a ball

θ be the angle between the vector y⃗c and the vector ⃗ycy∗, θxu,yc and θy∗,yc be the angles

between the vector y⃗c and vectors x⃗u and y⃗∗ respectively. The distance of y∗ from yc

is r∗ sin θ and the length of the projection of y∗ onto yc is ∥yc∥ + r∗ cos θ. Therefore we

have:

∥y∗∥ =
√

(∥yc∥+ r∗ cos θ)2 + (r∗ sin θ)2, (4.7)

cos θy∗,yc =
∥yc∥+ r∗ cos θ

∥y∗∥
, sin θy∗,yc =

r∗ sin θ

∥y∗∥
. (4.8)

Let θxu,y∗ be the angle between the vectors x⃗u and y⃗∗. This gives the following inequality

regarding the angle between the user and the best possible recommendation (we assume

that the angles lie in the range of [−π,+π] instead of the usual [0, 2π]) :

|θxu,y∗ | ≥ |θxu,yc − θy∗,yc|, (4.9)
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which implies

cos θxu,y∗ ≤ cos(θxu,yc − θy∗,yc), (4.10)

since cos(·) is monotonically decreasing in the range [0, π]. Using this equality we obtain

the following bound for the highest possible affinity between the user and any item within

that ball:

max
yi∈Br

qc

x⊤
u yi = x⊤

u y
∗(by assumption)

= ∥xu∥ ∥y∗∥ cos θxu,y∗

≤ ∥xu∥ ∥y∗∥ cos(θxu,yc − θy∗,yc),

where the last inequality follows from equation 4.10. Substituting equations 4.7 & 4.8 in

the above inequality, we have

max
yi∈Br

qc

x⊤
u yi ≤ ∥xu∥ (cos θxu,yc(∥yc∥+ r∗ cos θ) + sin θxu,yc(r

∗ sin θ))

≤ ||xu||max
θ

(cos θxu,yc(∥yc∥+ r∗ cos θ) + sin θxu,yc(r
∗ sin θ))

= ||xu|| (cos θxu,yc(∥yc∥+ r∗ cos θxu,yc) + sin θxu,yc(r
∗ sin θxu,yc))

≤ ||xu|| (cos θxu,yc(∥yc∥+ r cos θxu,yc) + sin θxu,yc(r sin θxu,yc))

(since r∗ ≤ r).

The second inequality comes from the definition of maximum, and the next equality

comes from maximizing over θ giving us the optimal value for θ = θxu,yc . Simplifying the

final inequality gives us the following upper bound:

max
yi∈Br

yc

x⊤
u yi ≤ x⊤

u yc + r ∥xu∥ . (4.11)
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Algorithm 5 SearchMetricTree(User xu, Item Tree Node Q)

if xu.ub < x⊤
uQ.center +Q.radius · ∥xu∥ then

// This node has potential
if isLeaf (Q) then

for each yi ∈ Q.S do
if x⊤

u yi > xu.ub then
y′ ← arg min

y∈xu.candidates
x⊤
u y

xu.candidates← {xu.candidates \ {y′}} ∪ {yi}
xu.ub← min

y∈xu.candidates
x⊤
u y

end if
end for

else
// best depth first traversal
Il ← x⊤

uQ.left.center; Ir ← x⊤
uQ.right.center;

if Il ≤ Ir then
SearchMetricTree(xu, Q.right);
SearchMetricTree(xu, Q.left);

else
SearchMetricTree(xu, Q.left);
SearchMetricTree(xu, Q.right);

end if
end if

end if
// Else the node is pruned from computation
return;

Algorithm 6 FindExactRecommendations(User xu, Item Tree Node Q)

xu.ub← 0;
xu.candidates← ∅;
SearchMetricTree(xu, Q);
return xu.candidates;

Figure 4.4: Metric-tree Search: The object xu.candidates contains the set
of current best K candidate items and xu.ub denotes the lowest affinity
between the user and its current best candidates.

Fast Retrieval Algorithm

Using this upper bound (4.11) for the maximum possible dot-product, we present the

depth-first branch-and-bound algorithm to search for the K-highest dot-products in Al-

gorithm 5. The algorithm begins at the root of the tree of items. At each subsequent step,

the algorithm is at a tree node. Using the bound in equation 4.11, the algorithm checks if
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the best possible item in this node is any better than the current best candidates for the

user. If the check fails, this branch of the tree is not explored any more. Otherwise, the

algorithm recursively traverses the tree, exploring the branch with the better potential

candidates in a depth-first manner. If the node is a leaf, the algorithm just finds the best

candidates within the leaf with the simple naive search. This algorithm ensures that the

exact solution (i.e., the best candidates) is returned by the end of the algorithm.

Theoretical Runtime Bounds

We do not have any runtime guarantees for the algorithm presented in this section.

However, we can conjecture possible runtime bounds. If the metric-tree constructed with

Algorithm 4 has a depth of O(log |Q|) (where Q is the set of items), then the runtime

bound for the construction of the tree is O(d|Q| log |Q|), where d is the dimensionality

of the model (since it requires O(d|Q|) operations at each level). During the tree-search

algorithm (Alg. 6), let us assume that the user visits L leaves. If L is much smaller and

in fact independent of the number of items |Q|, we can say that the runtime bound for

the search process for a single user is O(dL log |Q|). However, if L depends on |Q| as well,

then the best possible runtime bound is O(d|Q|).

Since algorithm 4 does not enforce that the splits be balanced, it is quite possible that

the depth of the tree might end up being O(|Q|), in which case, the worst case runtime

for the search process is O(d|Q|). However, in practice, the tree depths have been seen

to be way less than O(|Q|).

4.4 Fast Approximate Retrieval by Clustering Users

The efficiency of the exact algorithm can be limited, and some applications may require

even faster retrieval while allowing for some suboptimal recommendations. To this end,

we propose a scheme to cluster the users into cones of similar “taste”. We then pre-

compute the recommendations for the cone centers (representative user tastes), and use

these recommendations as approximate recommendations for incoming users.

Equation 4.4 specifies that the user preferences depend on the angle (direction) of the
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corresponding user vector but not on its norm (length). The smoothness of the cosine

function implies that two users with vectors in similar directions will have very similar

preferences. Hence, we partition the space into cones that aggregate users with similar

taste. Let C be a set of cone centers where each c ∈ C is a unit vector. The direction

of c is the taste of the cone which can be used to pre-compute recommendations for the

users in that cone.

For a new user query xu, its best cone center c∗ is:

c∗ ← argmax
c∈C

x⊤
u c (4.12)

After finding c∗ we retrieve the pre-computed recommendations of c∗ as the approxi-

mated recommendations for xu. Figure 4.5 depicts a user’s vector xu and its best cone’s

vector c∗. If ∆, the angle between xu and c∗, is small enough, then the approximated

recommendations (based on c) will be similar or even identical to the optimal recommen-

dations. The speedup is achieved since the number of cones is much smaller than the

number of users or items, thus finding c∗ is significantly easier than computing the exact

recommendations for each user .

The approximation is controlled by using an upper bound on the relative approxima-

tion error in terms of ∆ (this is presented in section 4.4.1). This bound evaluates the

quality of the approximation. By defining a threshold Tr on the maximum acceptable

error, we adaptively accept the pre-calculated approximate results when the error bound

is below the threshold, or compute the exact results otherwise. The details of the ap-

proximate RoR algorithm are given in figure 4.6. The threshold Tr introduces a tradeoff

between speedup and accuracy where maximal speedup is achieved when Tr =∞.

Choosing cones There are different schemes that can be used to choose a set of user-

cones. In general, one would like to choose a set of user clusters (cones) which appropri-

ately fits the distribution of possible queries. This can be efficiently achieved by spherical

clustering of the user vectors. Spherical clustering defines groups of users with similar

preferences or taste. Unit vectors in the direction of the clusters’ centers define the cone
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Figure 4.5: xu is the user’s vector, c∗ is a vector in the direction of the
cone’s center, yi is the item’s vector and ∆ is the angle between x∗

u and
c.

centers. We chose spherical clustering because of its computational efficiency. Further-

more, the clustering already assigns the user vectors into cones and there is no need to

search for the best matching cone for the existing users.

Note that clustering assumes the presence of groups of users common tastes. This is

a very natural assumption in every collaborative filtering algorithm.A requirement for a

good clustering is that ∆ < π
2
. Otherwise the dot-product between the user and an item

in the direction of the cone’s center can be negative, which implies that the user does not

like the items that fit the cone’s vector.

4.4.1 Approximation Error Bound

In this subsection we present a theoretical error bound on the relative approximation

error for any user. This is used by the adaptive algorithm to control the approximation

error.

The vector yi in figure 4.5 depicts an item’s vector that was chosen as an optimal

recommendation based on the cluster’s center c∗. Intuitively, as ∆ decreases, the approx-
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Algorithm 7 PrepareCones(User vectors X, Item vectors S)

Input – Set X, S
Output – Cone centers C, Tree Q
C = ChooseCones(X);
Q = MakeMetricTree(S);
for all c ∈ C do

c.candidates = FindExactRecommendations(c, Q);
end for

Algorithm 8 FindApproxRecommendations(User xu, Cone centers C, Threshold Tr,
Item Tree Q)

c∗ ← argmax
c∈C

x⊤
u c;

ErrorBound = ComputeErrorBound(c∗,xu);
if ErrorBound ≤ Tr then

return c∗.candidates;
else

return FindExactRecommendations(xu, Q);
end if

Figure 4.6: Approximate RoR: The subroutine ChooseCones chooses a
set of cones that fits the set of user vectors X in the dataset. Then, the
optimal recommendations are computed for each cone’s center using the
metric tree of section 4.3.
In FindApproxRecommendations, the subroutine ComputeErrorBound
computes the error bound according to equation 4.15. The approximated
recommendations are used for every query with an error bound below
the error threshold Tr, otherwise exact recommendations are computed.

imation error should decrease as well. We define the approximation error err = exp−real

as the difference between the expected rating based on the cluster exp = y⊤
i c

∗ and the

real dot-product with the user’s trait vector real = y⊤
i xu. The relative error is then:

err

exp
=

exp− real

exp
= 1− real

exp
(4.13)

We assume here that for every cone exp > 0; otherwise it means that there are no

fitting recommendation for that cone, which is very unlikely and we never encountered

this2.

2 Even if exp < 0 it is still possible to bound the error by following a very similar process to the one
shown here.

51



Since we want the worst-case bound, we ignore the case where real > exp since this

situation means that the affinity between xu and yi is better than expected. Hence,

assuming that real < exp, we have the following:

real

exp
=

cos (θxu,yi
)

cos (θc∗,yi
)
≥ cos (θc∗,yi

+∆)

cos (θc∗,yi
)

(4.14)

The inequality follows from the fact that θc∗,yi
≤ π

2
(because exp ≥ 0) and ∆ ≤ π

2
(a

requirement of the clustering). Since cos(·) is monotonically decreasing in the range [0, π],

we get cos (θxu,yi
) ≥ cos (θc∗,yi

+∆). Substituting (4.14) into (4.13) we get the following

upper bound on the relative error:

err

exp
≤ 1− cos (θc∗,yi

+∆)

cos (θc∗,yi
)

(4.15)

Note that this bound is a tight bound. Namely, when ∆→ 0 we get err → 0.

4.5 Experiments and Evaluations

We present the results of the exact RoR algorithm (Section 4.3) and the approximate RoR

algorithm (Section 4.4) demonstrating its efficiency-error tradeoff. Finally, as a thought

experiment, we also present the inaccuracies introduced by using existing best-match

algorithms (nearest-neighbor search in Euclidean space and best-match with respect to

cosine similarity) for the task of RoR.

4.5.1 Datasets

We used the following publicly available datasets:

1. MovieLens – Consisting of 1,000,206 ratings of 3,952 movies by 6,040 users. Ratings

are integers in the range 1-5, and the dataset is 95.81% sparse.

2. Netflix [19] – Consisting of 100,480,507 ratings of 17,770 movies by 480,189 users.

The ratings in Netflix are on a scale of 1-5, and the dataset is 98.82% sparse.
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3. Yahoo! Music [2] – This dataset is the dataset from Chapter 3. It is the largest

of the three consisting of 252,800,275 ratings of 624,961 music items by 1,000,990

users. The ratings are on a scale of 0-100 and the dataset is 99.96% sparse.

Currently the Yahoo! Music dataset of Chapter 3 is the largest publicly available collabo-

rative filtering dataset. Both our algorithms perform best on this dataset. In fact, in most

of our evaluations the results seems to improve with the size of the dataset. This is ex-

pected as overhead times become negligible when the number of queries (users) increase.

All the above datasets were in fact sampled from real datasets which were possibly much

larger. It is therefore likely that the results presented in this paper will further improve

when the proposed algorithms are implemented in real world systems.

For the MovieLens and Netflix datasets, we built and trained a basic MF model ((2.1)

in Section 2.1) using stochastic gradient descent minimization of the mean squared error.

For the Yahoo! Music dataset, we used the model presented in Chapter 3 that incorporates

music taxonomy and temporal effects. All models were trained with 50-dimensional latent

vectors. The root mean squared errors of these three models were 0.839 in MovieLens,

0.899 in Netflix, and 22.592 in Yahoo! Music.

We quantify the improvement of an algorithm A over another (baseline) algorithm A0

by the following term:

SpeedupA0
(A) =

Time taken by Algorithm A0

Time taken by Algorithm A
. (4.16)

Since there are no efficient search algorithms for maximum dot-products, our baseline

is a naive algorithm that searches over all items to find the best recommendations for

every user. We denote by Tnaive the time taken by the naive algorithm. It is clear that

ranking the items in a naive approach is Θ(#USERS × #ITEMS × d), where d is the

dimensionality of the vectors (here d = 50).

As expected, the naive algorithm is extremely time consuming. For example, the

baseline execution time for retrieving optimal recommendations for the Yahoo! Music
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dataset is 135.1 hours3 (over 5 days). The mean latency for a single user query is 0.482

seconds. Using our proposed combined method (figure 4.6), we achieve up to ×258.08

speedup, which is equivalent to just 31.4 minutes for the entire computation or an average

single user latency of 1.87 milliseconds. It is important to note that while the overall

computation time can also be reduced by means of parallelization, the latency for a

single user might be harder to improve upon.

Implementation Details We used the Cluto clustering toolkit [39] for spherical clus-

tering of the user vectors. We used 500, 1000, and 2000 clusters (cones) for the MovieLens,

Netflix and Yahoo! Music respectively, because these values showed a good balance be-

tween performance and speedup. In Alg. 4, we used N0 = 2 in all our experiments. In

general, these parameters can be optimized using a cross-validation process.

4.5.2 Exact RoR

The time taken by the exact algorithm of Section 4.3 can be broken up into two parts as

follows:

Texact = Ttree building + Ttree search, (4.17)

where Ttree building is the time taken by Alg. 4 to build the tree on the set of item vectors,

and Ttree search is the time taken to find the best recommendations to all users using Alg.

5. The speedup is therefore:

Speedupnaive(exact) =
Tnaive

Texact

. (4.18)

We present the speedups obtained for different numbers of top recommendations in Ta-

ble 4.1. The results indicate that the exact algorithm can be up to ×7 faster than the

naive algorithm. Another advantage of this method is its space efficiency – only the tree

(which consists solely of pointers) has to be stored. The complete (#USERS×#ITEMS)

user-preference matrix does not have to be stored and the recommendations for a user

can be obtained when required.

3 Using an Intel Xeon (E7320) CPU running at 2.13GHz
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Dataset K = 1 K = 5 K = 10 K = 50

MovieLens 3.01 1.82 1.73 1.21

Netflix 2.87 2.39 1.95 1.31

Yahoo! Music 7.26 5.25 4.7 3.01

Table 4.1: Speedups of Alg. 5 over naive search for different number of
top recommendations (K).

An important thing to note is that the tree-building task is extremely time efficient

– for example, for the Yahoo! Music dataset, the time taken to build the metric-tree on

the set of items (of size 624961× 50) was less than 16 seconds (the time required to load

the whole data into memory took more than 40 seconds!). The tree-building process is a

one-time cost which is amortized by the more expensive tree-search process. Moreover,

new items can be easily added to this metric-tree index4. Nevertheless, we include the

tree-building times in our computation for completeness.

It is important to note that the search time increases with K (the number of top

recommendations returned) and as a result the speedup decreases. This is because the

worst candidate for the user (xu.ub in Alg. 5) generally becomes smaller (worse) with

increasing K (Line 8 in Alg. 5). Hence, the number of nodes that have potential (Line 1

in Alg. 5) increase and so does the number of leaves finally visited.

Some applications may require more than just the top 50 items. In that case, the tree-

based exact search does not provide any significant improvement over the naive algorithm.

Therefore, we present further improvements in computational performance in the next

subsection with the proposed approximate algorithm.

4.5.3 Approximate RoR

The time taken by the approximate algorithm of Section 4.4 can be broken up into four

parts as follows:

Tapprox = Tclustering + Ttree building + Tsearch cones + Tsearch queries,

4 Efficient item insertion is inherent to tree data structures.
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MovieLens

Threshold 0.25 0.5 0.75 ∞
K=1 x2.49 x7.26 x9.02 x9.25

K=5 x1.6 x5.68 x7.66 x7.94

K=10 x1.52 x5.5 x7.49 x7.78

K=50 x0.89 x3.82 x7.73 x6.04

Netflix

Threshold 0.25 0.5 0.75 ∞
K=1 x2.69 x5.65 x12.61 x17.29

K=5 x2.48 x5.3 x12.27 x17.26

K=10 x1.93 x4.29 x11.15 x17.18

K=50 x1.19 x2.81 x8.89 x16.97

K=500 x1.04 x2.5 x8.28 x16.89

Yahoo! Music

Threshold 0.25 0.5 0.75 ∞
K=1 x10.49 x19.7 x150.87 x258.08

K=5 x7.67 x14.54 x128.46 x251.27

K=10 x6.88 x13.08 x120.77 x248.46

K=50 x4.45 x8.53 x91.78 x234.6

K=500 x1.49 x2.89 x39.1 x178.64

Table 4.2: Speedups of Alg. 8 over the naive algorithm for different
values of K and the error threshold.

where Tclustering is the time taken by the clustering algorithm, Ttree building is the metric-

tree construction time, Tsearch cones is the search time for optimal recommendations for

all the cones and, Tsearch queries is the time taken to compute exact recommendations for

queries that are above the threshold. The speedup of the approximate algorithm is:

Speedupnaive(approx) =
Tnaive

Tapprox

. (4.19)

We define two terms to quantify the quality of the top K recommendations retrieved

by the approximated method. The first quantity (Precision) denotes how similar the

approximate recommendations are to the actual top K recommendations (which are

retrieved by the naive approach):

Precision(K) , meanu

{
|Lrec(u) ∩ Lopt(u)|

K

}
, (4.20)
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Figure 4.7: Precision(K) of Lrec vs. speedup of the approximate algo-
rithm. The error bound threshold defines a tradeoff between high preci-
sion to high speedup. We used higher values of K for datasets with more
items.
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Figure 4.8: MedianRank(K) of the adaptive algorithm for different values
of the error bound threshold. Speedup values can be retrieved from
table 4.2.

where Lrec(u) and Lopt(u) are the lists of the top K approximate and the top K optimal

recommendations for the user u, respectively. Our evaluation metrics only care about

the items at the top of the approximated and optimal lists (Lrec(u) and Lopt(u)). In that

case there is no real meaning to compute Recall because its natural definition would be

identical to the Precision.

In addition, we define a secondary metric (MedianRank) which denotes the preference

of the approximated recommendations with respect to the rest of the items:

MedianRank(K) , median {∪uRank(Lrec(u))} , (4.21)

where the function Rank(L(u)) returns a list of the optimal ranks for the items in L(u)
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for user u (for example, Rank(Lopt(u)) = {1, 2, . . . , K − 1, K}).

A high value for Precision implies that the approximate recommendations are very

similar to the optimal recommendations, and a low value of MedianRank implies that

the approximate recommendations are highly preferred by the users. In many practical

applications, it is very likely to have a low value for Precision as well as forMedianRank.

This implies that the items recommended by the approximate algorithm are generally

different from the optimal items for the users, but the items recommended are still very

highly preferred by the users.

The speedups of the approximate algorithm for different values of the error bound

threshold are summarized in Table 4.2. The results indicate that the approximate RoR

method can be up to ×258 faster than the naive approach. The approximation quality

for different levels of speedup is depicted in figures 4.7 & 4.8.

Figure 4.7 shows the tradeoff between precision and speedup achieved by using differ-

ent values of the error bound threshold. When the threshold is high, the approximated

result is less likely to be rejected. In this case, the precision is lower, speedup is higher,

and performance is better for higher values of K. The latter is a result of the fact that

precision in a finite set is easier to achieve as K is higher. When the threshold is low, the

approximated result is more likely to be rejected. In this case, the precision is higher,

speedup is lower, and performance is better when K is lower. The latter is a result of

the fact that we are more likely to fall back to using the metric tree and the fact that the

tree performs worse on higher values of K (as explained earlier).

Figure 4.8 presents the MedianRank for different values of K and different values

of the error bound threshold. Speedup values can be retrieved from table 4.2. We see

that even when Precison values are low (e.g., when Tr = ∞) the MedianRank values

are also relatively low, which indicate that the approximated recommendations are still

highly preferred by the users.
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Dataset K = 1 K = 5 K = 10 K = 50 K = 100

MovieLens 0.4 0.54 0.59 0.72 0.77

Netflix 0.19 0.24 0.28 0.35 0.39

Y! Music 0.055 0.08 0.08 0.112 0.133

Table 4.3: Precision of the top (K) best matches with respect to the l2
distance

4.5.4 Existing Best-Match Algorithms

In this subsection we perform an experiment to demonstrate that existing nearest-neighbor

search algorithms (like LSH) cannot be applied directly to the task of RoR in the existing

MF framework without introducing high levels of error. We find the top recommenda-

tions for a user with respect to the Euclidean (l2) distance and with respect to the cosine

similarity. The first returns the K items closest to the user (in terms of the l2 distance),

and the second returns the K items with the smallest angles between the user vector and

the item vector (hence returning best matches with respect to the cosine similarity).

Dataset K = 1 K = 5 K = 10 K = 50 K = 100

MovieLens 0.05 0.12 0.16 0.35 0.46

Netflix 0.14 0.24 0.31 0.48 0.56

Y! Music 0.004 0.01 0.014 0.033 0.047

Table 4.4: Precision of the top (K) best matches with respect to the
cosine similarity

Tables 4.3 & 4.4 report the precision of the exact best-matches obtained with respect

to Euclidean distance and cosine similarity respectively. As expected from our discussion

in section 4.2, the precision is very low (especially on the larger Yahoo! Music dataset).

Contrasting these numbers to the precision of the approximate solutions obtained from

Alg. 8 (figure 4.7), we see that our approximate algorithm performs as accurately (if not

better) with significant amount of speedup. For example, for the Yahoo! Music data set

with K = 50, the best-matches with l2 distance and cosine similarity have a precision

of 0.112 and 0.033 respectively. In contrast, our proposed algorithm shows a speedup of

about ×200 while achieving a precision level of around 0.4 (figure 4.7(c)).

It is important to note that these returned recommendations in both cases (l2 distance

and cosine-similarity) are the exact best-matches with respect to their corresponding sense
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of similarity. When the exact results are so inaccurate (in terms of recommendation

quality), it is hard to expect good results once approximate techniques for these best-

match problems like LSH are used.
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V Item Based Recommendations

Most research on recommender systems is focused on modeling relations between users

and items. New items are recommended to users based on their past purchases or activ-

ities. However, in reality user profiles are often not available (e.g., when a user is new

or not logged-in) or irrelevant (e.g., when the current, short-term interest is unrelated to

longer term inclinations). Therefore, many industrial systems are based on item-oriented

recommendations, where item suggestions are solely based on their relatedness to a small

set of currently considered items. Such recommendations aim at highlighting alterna-

tive items or items that are often bought together. A well known example of such a

recommender is Amazon’s shopping cart recommender. Amazon’s system capitalizes on

customers impulse buying patterns [40] – i.e., when a customer is currently considering a

specific book, the system suggests to her more books that are often sold together. This

real-world popular recommendation setup is characterized by inferring the recommenda-

tions based on the user’s current interest rather than on her long term activity history.

Often, these item-oriented systems employ signals like “users who liked this product also

liked...”, which are directly mined from usage logs.

While evidentially used in practice, we are not aware of published scientific works

addressing collaborative-filtering item-oriented recommendations. This is not very sur-

prising, as the problem seems rather simplistic compared to personalized recommenda-

tions, which indeed may use item-item relations internally. After all, one could argue

that simply counting co-usage patterns among items can almost directly deliver the re-

quired similarity scores in the form of item-item conditional purchase probabilities, or

other pairwise similarity metrics (e.g., cosine and Jaccard similarities, etc.). However, we

wish to highlight two shortcomings of such straightforward retrieval techniques. First,

point-wise counting of item-item co-occurrences requires an adequate support for both
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items. Hence, similarities related to items subject to less user activity cannot be esti-

mated reliably. Second, a naive retrieval of most similar items requires evaluating all

possible items for each target item. Therefore, producing all related item pairs requires

a quadratic time which is hard to scale as item inventories grow in size. The scalability

issue could be alleviated by different pruning rules or by using items’ hierarchy, yet in

this Chapter we suggest a more systematic solution which accounts for both scalability

challenges as well accuracy challenges in the tail.

The main contribution of our research with regard to item based recommendations is

Euclidean Item Recommender (EIR) – a new algorithm for identifying related item-pairs,

which addresses the two aforementioned shortcomings. Instead of determining item-item

relations by the limited number of co-occurrences, we represent item-item conditional

probabilities through latent factor vectors which are learned through a global learning

algorithm utilizing the entire training data rather than just the pairwise information. We

thus achieve a smooth estimation of similarities which facilitates more reliable similari-

ties even for rarely co-purchased item pairs. Furthermore, the latent factor vectors are

embedded in a Euclidean space instead of an inner product space. By switching from an

inner product space to an Euclidean space we allow fast retrieval of most similar items

using “traditional” nearest-neighbor algorithms without the need for special retrieval al-

gorithms data structures such as in Chapter 4. We thus present an alternative approach

to improve scalability at the retrieval phase - this time by changing the model itself to

allow the use of more traditional data structures. Finally, another contribution of this

chapter is the establishment of a modeling and experimentation scheme for item-oriented

recommendation, which employs existing user preference datasets.

5.1 Related Work

Item-item neighborhood methods are well studied in the academic literature [40, 41]. We

share with these works the need to derive pairwise relations between items. However,

our research is item-oriented rather than user-oriented. Unlike previous work, we do not

model the users in our dataset. We focus on modeling the item-item relations directly.
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Some prior works [42, 43] used latent factors for representing item-item relations.

This work also follows this path with several distinctions: First, our goal of item-oriented

recommendation dictates a different cost function and training method. We present a

probabilistic model for items co-occurrences that use latent item vectors to model the

probabilities of any items pair to co-occur together. The use of a latent item vectors

allows us to generalize the model also to rare combinations of items that were not seen

in the training set. Second, we emphasize fast retrieval which is facilitated by embedding

the factor vectors in a Euclidean space, unlike the inner-product space used by others.

By utilizing an Euclidean similarity space we bypass the retrieval difficulties discussed in

Chapter 4.

The use of Euclidean similarity spaces in recommender systems can be extended also

to user-item algorithms. Therefore, this chapter also deals with the retrieval problem.

Instead of suggesting new algorithms for fast retrieval in an inner product space (as in

Chapter 4), here we introduce a new model that facilitates traditional retrieval algorithms

in Euclidean spaces (e.g., KD-Trees or LSH). The use of Euclidean space instead of an

inner product space was proposed also by Khoshneshin et al. [44]. There are two key

differences between our work and theirs: First, as explained above, we deal with item-

based recommendations. Second, while [44] used biases in their model, they ignore the

biases at the retrieval phase and therefore they never actually demonstrated fast retrieval,

unless biases are ignored. But biases are a dominant factor in recommendations, and

ignoring them altogether would be a mistake. In Section 5.3 we explain how to perform

fast retrieval even in the presence of item biases which are added on top of the Euclidean

similarity.

5.2 Modeling Pairwise Item Relations

We represent item-item relations through their conditional probabilities. That is, given

items i and j we will estimate P (j|i), the conditional probability that a user consuming

item i will consume item j as well. The conditional probabilities will be learned by em-

bedding all items in a low-dimensional Euclidean space. An item k will be represented by
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a d-dimensional vector yk ∈ Rd, and a scalar bias bk. The latent item vectors are designed

to capture item similarities and the biases capture popularity patterns independently of

other co-consumed items. To this end, we define the conditional probability P (j|i) by

the multinomial distribution

P (j|i) = exp(−∥yi − yj∥2 + bj)∑
k exp(−∥yi − yk∥2 + bk)

. (5.1)

Note that we assure
∑

j P (j|i) = 1. Finally, given a training set D, containing item pairs

of co-consumed (or co-liked) items, we seek to learn model parameters that maximize the

log-likelihood of the training set:

log-likelihood{D} def
=

∑
(i,j)∈D

logP (j|i) . (5.2)

5.2.1 Likelihood Maximization

Learning proceeds by stochastic gradient ascent. Given a training pair (i, j) we update

each parameter θ (a latent vector component or a bias ) by

∆θ = η
∂P (j|i)

∂θ
=η

[
∂

∂θ

(
− ∥yi − yj∥2 + bj

)
+
∑
k

P (k|i) ∂
∂θ

(
∥yi − yk∥2 − bk

)]
, (5.3)

where η is the learning rate. However, such a training scheme would be too slow in

practice as each update rule requires summing over all items. We thus resort to sampling

the weighted sum in (5.3) based on the importance sampling idea proposed by Bengio

and Senécal [45]; see also Aizenberg et al. [46] for a related usage of the technique.

With importance sampling we draw items according to a proposal distribution. In

our case we assign each item a probability proportional to its empirical frequency in

the training set (fraction of train pairs containing the item), and denote this proposal

distribution by P (i|D). Items are sampled with replacement from P (i|D) into a list L.

Using L, we approximate P (k|i) for each k ∈ L with the weighting scheme

w(k|i) = exp(−∥yi − yk∥2 + bk)/P (k|D)∑
l∈L exp(−∥yi − yl∥2 + bl)/P (l|D)

. (5.4)
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Consequently, the approximated gradient ascent step given a training pair (i, j) will

be

∆θ =η

[
∂

∂θ

(
− ∥yi − yj∥2 + bj

)
+
∑
k∈L

w(k|i) ∂
∂θ

(
∥yi − yk∥2 − bk

)]
. (5.5)

As mentioned in [45], it is desirable that the size of the set L grows as the training

process proceeds because at later training phases more delicate parameter adjustments

are needed. Hence, we employ a simple rule for controlling the sample size (|L|) based on

the fitness of the current estimate. Given a training pair (i, j), we keep sampling items

into L until the following condition is satisfied:

∑
k∈L

P (k|i) > α · P (j|i)

⇔ (5.6)∑
k∈L

exp(−∥yi − yk∥2 + bk) > α · exp(−∥yi − yj∥2 + bj)

The adaptive sampling automatically lets the sample size grow when parameters are

nearing final values and the correct paired item is getting a relatively high probability.

In our implementation we used α = 3. We impose a minimal size of 5 on the sample size.

For efficiency we also limit the maximal sample size to 500.

5.3 Fast Retrieval

As explained in Chapter 4, retrieval time of recommendations is a key factor when de-

signing real-world large-scale systems that need to address tens of thousands of queries

per second. A major design goal of EIR is enabling fast pairing of items. In this setting,

the task of efficiently retrieving recommendations requires finding items that the user is

most likely to purchase given the item she is currently considering. Namely, we wish to

find an item j that maximizes:

max
j ̸=i

P (j|i) ⇔ max
j ̸=i
−∥yi − yj∥2 + bj. (5.7)
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It is easy to see that by ignoring biases we are left only with the squared Euclidean

distance between the two items vectors, and the retrieval is reduced to a simple nearest

neighbor task. Nevertheless, biases are a key contributor to recommendations accuracy

and should not be dismissed. We therefore propose a simple transformation to reduce

the problem in (5.7) to that of a simple Euclidean search. For each item vector yj, we

define a concatenated item vector ŷj as follows:

ŷj = [y⊤
j ,

√
Mb − bj]

⊤ ∈ Rd+1, (5.8)

whereMb is the maximum bias (Mb = maxj bj). We also define concatenated query vector

as follows:

ȳi = [y⊤
i , 0]

⊤. (5.9)

It can be easily shown that (5.7) is equivalent to:

max
j ̸=i

P (j|i) ⇔ min
j ̸=i
∥ȳi − ŷj∥2 = min

j ̸=i
∥yi − yj∥2 +Mb − bj = max

j ̸=i
−∥yi − yj∥2 + bj.

(5.10)

Therefore, this transformation facilitates a variety of Euclidean nearest neighbor algo-

rithms e.g., Metric Trees, or Locality Sensitive Hashing (LSH).

5.4 Empirical Study

5.4.1 Dataset Construction

We evaluate our algorithm using four different datasets: The Netflix dataset [19], The

Million Song Dataset (MSD) [47], Ziegler’s dataset of books’ reviews1 [48], and the Yahoo!

Music dataset from Chapter 3. Our work is focused on implicit ratings, however of the

four aforementioned datasets only the MSD dataset is implicit. Therefore, we simulated

imlicit data from the explicit datasets as follows: In Netflix, we first filtered only the

ratings with a value ≥ 4. We then produced a dataset of “co-liked” movies – namely,

1 www.informatik.uni-freiburg.de/~cziegler/BX/

66



Items Users Training Examples Test Examples
Netflix 17,749 478,488 53,414,617 941,614
MSD 384,526 1,019,296 45,078,691 2,037,890
YMusic 433,903 497,881 40,362,704 984,162
Books 340,536 103,723 1,068,842 66,306

Table 5.1: Datasets Statistics

movies that were liked by the same users. For the YMusic dataset, we repeated the same

process for ratings ≥ 80. In the books dataset we simply used all the data-entries in order

to create a dataset of co-consumed books that were read and reviewed by the same users

(regardless of the review). Finally, in all datasets we generated item pairs as follows: For

each user we created a random cyclic order of the items consumed by her. Then, the final

dataset is comprised from all the pairs of consecutive items.

We split our datasets into train and test subsets by randomly choosing a subset of

users and placing all their item pairs in the test-set. Table 5.1 summarize the final

datasets statistics.

5.4.2 Baselines

We compared performance against traditional item-item similarity measurements:

• Empirical Conditional Probability (ECP): Empirical measurement of the condi-

tional probability P (j|i) defined as

P (j|i)empirical =
ni,j

ni + 1
,

where ni is the total number of occurrences of item i in the dataset, and ni,j is the

number co-occurrences of i and j together (counts were smoothed by adding 1).

• Jaccard Similarity: Jaccard similarity is a well know similarity measure defined as

Jaccard(i, j) =
ni,j

ni + nj − ni,j

.
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• Cosine Similarity: Cosine similarity is another widely used similarity measure de-

fined as

Cosine(i, j) =
ni,j√
ninj

.

Note that ranking based on these similarity measures differ in the way of normalizing the

co-counts (ni,j).

5.4.3 Accuracy Results

We measure performance in terms of Mean Percentile Rank (MPR). This metric was

earlier used in studies of implicit feedback datasets within the context of personalized

recommendations [49, 50]. In our item-oriented context, it is defined as follows: For each

test pair of related items (i, j) we sample N additional random items. We rank every

item k (the N random ones and j) with respect to P (k|i) based on our model. Then,

we compute the percentile rank of item j within this ranking. Ranks are averaged over

all test pairs. Accordingly, percentile ranks closer to zero indicate better rankings. We

used N = 200 in our experiments, though results are insensitive to changes in N given

the large number of test pairs.

We trained the EIR model with d = 50 dimensions. Table 5.2 presents the MPR

results of EIR against the baselines. We were encouraged by the fact that our algorithm

outperformed the baselines on the Netflix, MSD and the Books datasets. On the YMusic

dataset, our algorithm was second to ECP with a very small difference between the two.

Figure 5.1 depicts the mean percentile rank of the different algorithms vs. the support

(popularity) of the conditioned item i in P (j|i). While all the algorithms perform well on

popular items, EIR has a clear advantage in the long tail. This is explained by the fact

the EIR employs global optimization that utilizes the entire training data rather than

just the pairwise information. Among the different baseline algorithms, ECP is most

similar to EIR. This is to be expected, as ECP is merely an empirical estimate of P (j|i)

– the objective of EIR.
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EIR ECP Jaccard Cosine
Netflix 5.825% 6.57% 9.728% 8.376%
MSD 6.602% 13.663% 35.287% 49.18%
YMusic 2.837% 2.536% 9.795% 9.545%
Books 27.342% 35.902% 53.896% 61.011%

Table 5.2: Comparing MPR of EIR against common baselines (lower is
better).
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Figure 5.1: Mean Percentile Rank vs. the support of the conditioned
item i in P (j|i) in the MSD dataset.

Netflix MSD YMusic Books
Speedup 25.036 21.422 31.219 11.218

Table 5.3: Speedup values for EIR with 50 dimensions

5.4.4 Fast Retrieval Results

We evaluate the fast retrieval capabilities of EIR using metric trees [36, 51]. Metric

trees are binary space-partitioning trees widely used for the task of indexing Euclidean

datasets. The tree construction is very fast and space efficient, and the search employs

the depth-first branch-and-bound algorithm similar to that of [51]. We quantify the

improvement in retrieval time for the task described in (5.7) when using the metric tree

compared to a naive search as follows:

Speedup =
Retrieval Time Using Naive Search

Retrieval Time Using Tree
. (5.11)

The speedup values for each dataset are presented in Table 5.3.
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5.5 Future Work

We plan to extend this work to include also predictions from a set of several items to the

next item the user is likely to consume. For example, given a set of items S in a user’s

virtual shopping cart, we wish to predict the next item i the user is likely to add to her

basket, Namely, we wish to model P (i|S). This will better reflect common scenarios of

online shopping websites.
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VI Additional Work

During my studies I have published few additional papers. This Chapter briefly

describes these works.

6.1 Additional Research on Recommender Systems

6.1.1 Real World Recommender Systems

Together with colleagues at Microsoft, we described the original settings of the Xobx

Live Recommender system [3]. At the time of publication, the system was based on

the Matchbox algorithm [18] which was used to compute personalized games and movies

recommendations to over 50 million Xbox users worldwide. Later on, we replaced that

system with a novel scalable algorithm designed specifically for one class collaborative

filtering [52]. Unlike other algorithms, the algorithm in [52] delineates the odds of a user

disliking an item from simply not considering it. We propose a new perspective on the

one-class problem which common in most real world settings.

Another publication describes Microsoft’s Sage project [53]. Sage is Microsoft’s free,

all-purpose recommender system, designed and deployed as an ultra-high scale cloud

service on Azure. In [53] we give an overview of the systems in terms of algorithms as

well as the engineering aspects.

6.1.2 Feature Selection for Recommender Systems

Meta-data features can be used to improve recommendations accuracy and mitigate the

cold-start problem. In Chapter 3 we presented a model that uses taxonomy features in

order to propagate information between different items sharing the same taxonomy. In our

Xbox movies recommender, we used meta-data features in the form of labels to improve

our understanding of cold movies [54]. Unlike the taxonomy features, only part of the
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movie features are informative or useful with regard to collaborative filtering. In [54] we

present a Matrix Factorization model with Embedded Feature Selection (MF-EFS). MF-

EFS incorporates a novel sparsity prior on feature parameters to automatically discern

and utilize informative features while simultaneously pruning non-informative features.

A different aspect of feature selection for recommendation systems is presented in

[55]. In this work we presented a feature selection algorithm designed specifically for

collaborative filtering recommender systems. The algorithm can handle different types of

meta-data attributes as well as labels. It scores the features according to their informative

content with regard to the recommendation task. Feature selection naturally follows by

selecting the high scoring features while pruning the low scoring ones.

6.1.3 Group Recommendations

Another paper I published together with colleagues at Microsoft Research Cambridge

and Microsoft Research New-York focused around the area of Group Recommendations.

In [56] we studied a unique dataset consisting of individual and group television viewing

patterns of more than 50 million U.S. viewers in over 50,000 groups atomically recorded by

Nielsen1. Altogether, we studied a dataset of more than 4 million household views paired

with individual level demographic and co-viewing information. Our analysis revealed how

engagement in group viewing varies by viewer and content type, and how viewing patterns

shift across various group contexts. Furthermore, we leveraged this large-scale dataset

to directly estimate how individual preferences are combined in group settings, finding

subtle deviations from traditional models of preference aggregation. Finally, we presented

a simple model which captures these effects and discuss the impact of these findings on

the design of group recommendation systems. To the best of our knowledge, currently

this is the largest academic study of group viewing patters and group recommendations

to be published.

1 www.nielsen.com
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6.2 Music Information Retrieval in Peer-to-Peer Networks

Some of my earlier studies were centered on Music Information Retrieval (MIR) from

Peer-to-Peer (P2P) datasets. This chapter briefly summarize this line of work.

6.2.1 Trend Prediction Based on P2P Queries

Detecting Musical Artists Before They Become “Viral”

This line of work deals with detecting musical artists on the Internet right before they

become “viral”. We monitor the Word of Mouth phenomena in file sharing networks in

order identify local artists with high probability to be adopted by a much larger audience.

In [7, 8], we used geographically identified P2P queries in order to detect local emerging

musical talents. The detection algorithm is based on the observation that emerging

artists have a discernible stronghold of fans in their hometown area where they are able

to perform and market their music. In a file-sharing network, this is reflected as a delta

function spatial distribution of content queries. The algorithm mimics human scouts

by looking for performers which exhibit a sharp increase in popularity within a small

geographic region but low nation-wide popularity.

Predicting Artists’ Success on The Billboard Charts

In past decades, air-plays and record sales were the primary means of distribution of

popular music. The Billboard Hot 100 was therefore a reasonable proxy to popularity.

Today, however, new technologies in particular the Internet, have created new means

for distribution of music. The growing popularity of file sharing make record sales and

radio plays an increasingly poor predictor of peoples’ taste. In [9] we compiled a ranking

chart based on P2P queries aiming to serve as an alternative to the Billboard charts. We

compared our chart with the official Billboard Hot 100 chart and show a high correlation

(0.89) between the two charts with a time gap of one week in favor of our chart; namely,

we detect the same popularity trends shown in the Billboard chart, but one week earlier.

Schedl et al. continued this line of research in [10], where several alternative artist ranking
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charts from various Internet sources were compared.

In a later work [11] we used a dataset of 185.6 million Gnutella queries to predict trends

on the Billboard Hot 100 chart. We employed decision trees algorithms such as C4.5 [57]

and BFTree [58, 59] to predict a song’s top rank on the Billboard singles chart. We were

able to predict accurately songs entrance to the top-10, top-20 and top-30 positions. We

also showed ability to predict “flops” – songs that do not make it to the top-50.

6.2.2 Collaborative Filtering Based on P2P Networks

Collecting Datasets from P2P Networks

In [13] we introduced a new collaborative filtering data-set collected from the Gnutella

network. We employed a Crawler-Browser set-up in order to discover participating nodes

and record information on their shared folders content. In [60, 61] we further investigate

the content of this dataset and give additional details about the cleaning and post-

processing steps.

In addition to the Gnutella file sharing network, we experimented with other file

sharing networks such as the Direct Connet (DC) network. We devised a participating

agent for measuring and characterizing the DC file sharing network [12]. Our study,

which was the first measurement study of the DC network, discovered a query duplication

problem that stems the protocol’s scalability potential.

Evaluating the Information Content of P2P Datasets

In this research [62] we compared artist-artist relations derived from our P2P dataset

from [13] with other MIR approaches for artist-artist similarity. We compared against

CF similarities derived from the Last.fm dataset [63], acoustic models such as Gaussian

mixtures over MFCCs and chroma vectors, semantic models such as semantic multinomial

auto-tags and social tags from Last.fm2), and a text model based on the artists biography

data. We evaluate these different data sources against an external partial order artists

similarity survey using a similarity prediction task as taken from [64].

2 http://last.fm/
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