
The Xbox Recommender System

Noam Koenigstein
Microsoft R&D
Herzliya, Israel

Nir Nice
Microsoft R&D
Herzliya, Israel

Ulrich Paquet
Microsoft Research

Cambridge, UK

Nir Schleyen
Microsoft R&D
Herzliya, Israel

ABSTRACT
A recent addition to Microsoft’s Xbox Live Marketplace is
a recommender system which allows users to explore both
movies and games in a personalized context. The system
largely relies on implicit feedback, and runs on a large scale,
serving tens of millions of daily users. We describe the
system design, and review the core recommendation algo-
rithm.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

General Terms
Algorithms

Keywords
Recommender Systems, Collaborative Filtering, Xbox

1. INTRODUCTION
The distribution of items bought in a marketplace typ-

ically follow a power-law distribution, with popular items
exponentially overwhelming less popular ones. As a result,
many items in the tail of the distribution, which would have
been suited to a particular user, are never exposed. There
are a number of reasons for tailoring a user’s experience in
any marketplace, the most compelling of which are the need
to increase user engagement, and the need to give exposure
to tail items that would, under normal circumstances, be
drowned by a few popular ones.

These can be addressed by a system that models and
learns from user engagement. Recommender systems have
been particularly effective at this task, to which the systems
of MSN News, Amazon, Netflix, and the likes of others can
testify. Each of these face unique challenges that are posed
by the size and nature of the catalog, type of user feedback,
rate of catalog change, scalability, and expected real-time
system performance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RecSys’12, September 9–13, 2012, Dublin, Ireland, UK.
Copyright 2012 ACM 978-1-4503-1270-7/12/09 ...$10.00.

1.1 The Xbox dataset
Our dataset comprise of usage information from Xbox con-

soles. For every user we collect the interaction time with ev-
ery item on our catalog (either a game or a movie). We have
tens of millions of active users, almost all of which are play-
ing Xbox games. Some of our users also enjoy our movies
catalog and watch movies purchased using their Xbox con-
soles. We provide personalized recommendations for both
domains using two identical recommendation engines as de-
scribed in this paper.

The number of Xbox users increase on a daily basis. Simi-
larly, we regularly update our games and movies catalog with
the latest products available on the market. With our very
large user base, we hardly encounter a “cold start” problem
in the items domain, because within a few hours we already
have sufficient information on every new item. Similarly,
Xbox users generally purchase some games together with
their consoles, so we rarely encounter “cold users” in the
games domain. Only in the movies domain, we encounter
the cold start problem for users that do not watch movies on
their consoles. We still hope to address this problem with
cross domain learning, however this is out of the scope of
this paper. In this paper, we deal only with users that have
at least one item in their usage history.

Unlike the well-studied Netflix prize problem, where the
user’s movie preferences are explicitly given by a five-star
rating scale, our data largely comprises of implicit signals,
like that of purchasing a game or watching a movie on the
Xbox console. The absence of a negative signal poses a chal-
lenge to conventional solutions based on the factorization of
a “ratings” matrix into two low rank matrices with one rep-
resenting latent user features, and the other representing
latent item features. We therefore augmented our implicit
dataset with randomly generated negative signals to prevent
trivial solutions as explained in Section 2.

This paper.
In this paper we wish to bring a complete overview of

a real world large scale recommender system. We draw a
distinction between the tasks of modeling (how hidden pa-
rameters are assumed to generate observed data), inference
(finding the hidden parameters given the data), and utility
(using the model’s predictions in order to optimize a reward
function). Section 2 is devoted to an overview of the sys-
tem’s architecture and some preprocessing steps to prepare
the data. Section 3 explains the modeling and parameter
inference, which happens offline, and gives an example of
an online utility function. Finally, in Section 4 we evaluate
the model and summarize in Section 5.

Telemetry

Recommendations
Model

Parameters

Run-time
Recommender

Xbox

Offline
Storage

Offline
Modeling

Online

Offline

Figure 1: Xbox recommender system architecture

2. SYSTEM DESIGN AND
PREPROCESSING

The architecture of the Xbox recommender system con-
sists of an offline module and an online module (see fig-
ure 1). Feedback from the the Xbox consoles (“telemetry”)
is constantly sent back into the the offline module. In the
offline storage we store information such as users’ play time
and movies watched by users. This information is then pro-
cessed into an ownership dataset to be used by the offline
modeling component for learning the model parameters.

In general, the offline modeling component treats the own-
ership information as an indication that the user liked the
item. When processing the ownership information we em-
ploy some filters to remove games that were almost never
played or movies that were not fully watched, but these
are rare events that hardly effect the final recommenda-
tions. The ownership dataset comprises of implicitly gen-
erated “positive” only signals. Furthermore, it is hard to
define credible ordering on those signals (e.g., the user liked
a better than b), thus ordering algorithms such as [4, 3]
are not useful. We therefore resolve to randomly generating
negative signals as we describe below.

On average, an Xbox user has about 18 games and watched
about 7 movies. Therefore, we can randomly pick a small
number of items from our large catalog and assume that the
reason the user do not own them is because she doesn’t like
them. For every user we pick the same number of “negative”
items as the number of items she liked (“positive” items).
By doing so, we cancel out the user bias as explained in
Section 3. We draw the “negative” items with probabilities
proportional to their popularity (training-set frequencies).
This approach was highly popular in many of the solutions
submitted to the second track in the KDD-Cup‘11 [2] com-
petition. Sampling according to popularity penalize popular
items, which based on subjective internal evaluations found
to increase user satisfaction.

The binary like-dislike matrix is then passed on to the
offline modeling. A detailed description of the inference al-
gorithm implemented in the offline modeling component is
given in in 3.1.

Every few hours, the learned parameters are uploaded
from the offline modeling component into the model pa-
rameters database. The run-time recommender in the on-
line module is a real-time service that utilize the learned

parameters in order to generate user specific recommenda-
tions. Upon a console-query for personalized recommenda-
tions, the run-time recommender chooses items according to
the utility algorithm described in Section 3.2. These recom-
mendations are then sent back to the console and presented
to the user under the title “Picks For Me”.

3. PREDICTION MODEL
The interaction between users and items lends itself to

bilinear models. In them, each user m is represented by
um ∈ RK , each item n is represented by a similar vector
vn, and the magnitude of their inner product uT

mvn de-
notes the user’s affinity to the item (personalization). The
parameters U = {um}Mm=1 and V = {vn}Nn=1 are unob-
served, and should be inferred from data. This core set-up
has been widely used in the Netflix prize competition, and
we’ve adopted the Matchbox library of [5] for parameter in-
ference.

The bilinear model has the property that items which of-
ten co-occur for a given user, have similar v-vectors. Figure
2 shows V embedded in R2 for a number of games. In it,
the similarity between vectors of sports games, for example,
is clearly visible.

-0.3

-0.3

Action and Adventure

Card and Board

Classics

Family

Fighting

Music

Platformer

Puzzle and Trivia

Racing and Flying

Roleplaying

Shooter

Sports and Recreation

Strategy and Simulation

Figure 2: Game feature vectors embedded in R2,
tagged by genre.

In practice some items are more popular than others, for
which the personalization term is offset with a bias bn for
each item. We could equally add user-specific biases, but
omit it in order to regress a users usage list which has the
same number of positive and negative items. The probability
that user m is going to like (or dislike) item n is

p(lmn|um,vn, bn) = Φ
(
lmn(uT

mvn + bn)
)

(1)

where lmn = 1 for the user liking and −1 for the user dis-
liking the item. Φ(z) =

∫ z

−∞N (x; 0, 1)dx is the Gaussian

cumulative density function, and acts as a link function that
maps its argument to a value in the (0, 1) interval.

Our working assumption is that there is sufficient us-
age data to infer vn. Alternatively, we can further regress
against user or item-specific meta-data, or learn a K-dimen-
sional representation for each meta-data atom if required [5].

Given the data D .
= {lmn} and parameters θ

.
= {U,V,b},

the likelihood for observing the data is

p(D|θ) =
∏

(m,n)

p(lmn|um,vn, bn) .

Our interest lies in how well the data supports the parame-
ters, i.e. the posterior probability of θ given the data. This
is given by Bayes’ theorem,

p(θ|D) =
p(D|θ)p(θ)
p(D)

, (2)

which incorporates a prior distribution on the model param-
eters. In our application, p(θ)

.
= p(U)p(V)p(b) factorizes as

Gaussian distributions over the features and biases.
Bayesian inference comes into its own right when the pos-

terior density p(θ|D) is used for predictions. Instead of using

a single parameter estimate θ̂, which needs to be carefully
regularized to avoid overfitting when data is sparse [1], we
rather average the likelihood function over all parameters
that plausibly explain the data. In other words,

p(lij = 1|D) =

∫
p(lij = 1|θ) p(θ|D) dθ (3)

gives the predictive distribution that user i is going to like
item j.

Both the posterior and predictive distributions, given in
(2) and (3), require the computation of analytically intractable
integrals. The integrals can be evaluated stochastically through
Monte Carlo methods, or approximated deterministically
through a relaxation into an optimization problem.

3.1 Parameter inference
We approximate the posterior distribution with a one that

factorizes with

p(θ|D) ≈ q(θ) =
∏
m

q(um)
∏
n

q(vn) q(bn) .

The choice is largely driven by practical convenience, as
q(θ) is “factorized enough” to give rise to computationally
tractable optimization problem and algorithm, and it allows
us to tractably compute the (approximate) predictive distri-
bution,

p(lij |D) ≈
∫
p(lij |ui,vj , bj) q(ui) q(vj) q(bj) d{ui,vj , bj} ,

(4)
where we’ve replaced p(θ|D) with q(θ) in (3). The factor-
ization also ensures that only the matching user and item’s
approximations play a role, and other random variables are
independently averaged away in (4).

We learn q(vn) for each item; this is chosen as a K-
dimensional factorizing Gaussian distribution q(vn) =

∏
k q(vnk).

As a result, we not only have a mean estimate of each
item’s (and user’s) feature vector, but also encode uncer-
tainty about its location through the variances of q(vn).
The variance of q(vn) is typically small for very popular
items, but larger for items that are less frequently played,
watched, or bought. As a consequence, popular games (with
more “well determined” parameters) will have a stronger ef-
fect on determining a user’s feature vector, than games for
which the model is less certain.

The approximation q(θ) is found by an algorithm called
“Expectation Propagation”, which has its roots in old and
well-studied approximations1 in statistical physics; the reader
is referred to [5] for further algorithmic details.

1Expectation Propagation solves for the saddle point of a
Bethe free energy with weak consistency constraints.

3.2 Retrieval of Recommendation
After training the model and learning parameter approx-

imations for {U,V,b}, we are free to choose a utility to
optimize. As an example, the default task of retrieving rec-
ommendation for a specific user m can be formulated as fol-
lows. Let Q .

= {q(vn), q(bn)} be the set of all item densities,
over which we maximize

arg max
qn∈Q

∫
p(lmn|um,vn, bn) q(um) q(vn) q(bn) d{um,vn, bn} ,

to find the items that a user will like with largest predictive
probability.

In practice the above expression is analytic if either of the
feature distributions is a point mass, or can otherwise be
approximated with an analytic function as explained in [5].

4. RESULTS
We evaluate our system using a classification task inspired

by the KDD-Cup‘11 [2] competition. In Section 4.2 we also
give a more traditional mean rank metric.

4.1 Recommendations as a classification task
Results here are based on 10,000 Xbox users with at least

2 games and at most 50 games. Here, we ignored Xbox con-
soles with more than 50 games because these may belong
to larger organizations rather than individuals. Since tradi-
tional evaluation (e.g., root mean squared error) do not gen-
eralize well to the case of implicit data, we choose a rather
new evaluation metric that was recently introduced in the
second track of the KDD-Cup‘11 [2] competition: For each
test user we kept one item in the test set, and trained on
the rest of the items. After training, we randomly picked an-
other item for every user which is not present in the training
or the test items of that user. The goal is to differentiate the
item that the user owned from the item that was randomly
picked. The randomly picked items were chosen in two meth-
ods: uniformly from the items set, and non-uniformly with
probabilities proportional to each item popularity (similar
to the process we use to generate implicit negative signals in
Section 2). Namely, we define a classification task for every
user and measure the overall precision on all users:

Precision =
1

|M |
∑

(m,n)∈T

1 [p (lmn = 1|D) > p (lmk = 1|D)] ,

(5)
where T is the test-set, p (lmn = 1|D) is the probability that
user m likes item n (3), p (lmk = 1|D) is the probability for
user m to like the randomly sampled item k, and 1 (·) is an
indicator function. Note that since each user has just one
item in the test-set, there is no real meaning to the recall
measurement in this setting.

We had several objectives in choosing this evaluation task:
First, it is closely related to the methodology we use in train-
ing the model (Section 2). More importantly, we believe this
evaluation better relate to real life scenarios: As explained in
[2], the proposed metric is related to the common recommen-
dation task of predicting the items that the user is likely to
own (rather than predicting a rating value to items the user
already owns). In fact, this metric extends the evaluation to
the truly missing entries and measures the true generaliza-
tion power of the algorithm. Finally, there is an advantage
to using this metric with negative examples drawn according
to their popularity (non-uniformly), because it discourages
known trivial solutions where most popular items are always
suggested regardless of the user taste. In this way we focus

Uniform Non-Uniform
Domain Baseline Xbox Baseline Xbox

Games 84.34% 89.21% 60.21% 75.56%
Movies 65.08% 79.27% 50.88% 69.93%

Table 1: Evaluation results for Xbox personal-
ization recommender for movies and games. We
present precision results against a baseline that al-
ways chooses the more popular item. We used both
uniformly sampled items (over the entire items set)
and non-uniformly sampling according to items pop-
ularity.

our evaluation on the true personalization power of the al-
gorithm, rather than learning biases.

We evaluate this classification task against a simple base-
line that always predicts that the user prefers the more pop-
ular item. Table 1 summarize the results. We see that the
baseline algorithm performs relatively well when the nega-
tive items are uniformly distributed (84.3% and 65.1% in the
games and movies domains respectively). However, these re-
sults are attributed only to learning popularity of items (bi-
ases), without any personalization. When negative signals
are drawn according to their popularity, we better observe
the precision gained by our personalization recommender
over the baseline: an improvement of about 15% and 19%
in the games and movies domains respectively. The overall
results of the games recommender are better than those of
the movies recommender. This is the result of the higher
sparsity in the movies dataset (many more items, much less
implicit ratings).

Note that in general, if we can sample negative items ex-
actly according to their popularity, we expect that the base
precision on the non-uniform test-set will be about 50% (as it
is in movies). However, in the games domain some items are
so popular that it is impossible to generate negative exam-
ples in exactly the same distribution as the positive items2.
Because we do not assign negative items to users that also
has those items in their positive items list, the resulting dis-
tribution is still somewhat biased towards the popular items
and the baseline algorithm still achieves 60.2% precision on
this task.

4.2 Mean Rank
We also present a more “traditional” evaluation using the

mean rank metric. As before, for each user we keep one game
in a test-set, and use the rest of the items to train the model.
We then rank the item in the test set against 8 thousand
other games from our catalog according to p (lmk = 1|D) -
the probability that the user m will like an item k. We
measured the mean rank of the test item for every user in
the test set.

Figure 3 presents the mean rank (on a log scale) vs. the
number of items in users history. Here we used 100,000
users (here we also included users with history longer than
50 items). An interesting observation is that the mean rank
values increase with the users history length. Most of our
users seem to own several very popular games. As users
buy more games, they are more likely to own long tail items
that are harder to model, which explains the line trend in
Figure 3.

2Because the most popular Xbox games are owned by most
of our users.

4.5

5

5.5

6

6.5

7

7.5

8

0 50 100 150 200 250 300 350 400

M
e

an
 R

an
k

(l
o

g
sc

la
e

)

Items in users histories

Figure 3: Mean-rank values vs. items in users his-
tory.

5. SUMMARY
A recent addition to Microsoft’s Xbox Live Marketplace is

a recommender system that allows users to explore personal-
ized content tailored individually to their taste. This paper
gives a complete overview of Xbox’s recommender system
in terms of system design, architecture, modeling, inference
and utilization. We hope this example of real world large
scale recommender system will give insights that would ben-
efit the RecSys community academia and industry alike.

6. ACKNOWLEDGMENTS
The Xbox recommendation system was made possible through

the hard work of everyone in the Recommendation Group in
Microsoft Entertainment Services. The Matchbox library [5]
was developed by the Machine Learning Group in Microsoft
Research, Cambridge, UK.

7. REFERENCES
[1] G. Dror, N. Koenigstein, and Y. Koren. Yahoo! music

recommendations: Modeling music ratings with
temporal dynamics and item taxonomy. In Proc. 5th
ACM Conference on Recommender Systems
(RecSys’11), 2011.

[2] G. Dror, N. Koenigstein, Y. Koren, and M. Weimer.
The Yahoo! music dataset and KDD Cup ’11. Journal
Of Machine Learning Research, 17:1–12, 2011.

[3] U. Paquet, B. Thomson, and O. Winther. A
hierarchical model for ordinal matrix factorization.
Statistics and Computing, 21, 2011.

[4] S. Rendle, C. Freudenthaler, Z. Gantner, and
L. Schmidt-Thieme. Bpr: Bayesian personalized
ranking from implicit feedback. In UAI ’09:
Proceedings of the 25th Conference on Uncertainty in
Artificial Intelligence, 2009.

[5] D. H. Stern, R. Herbrich, and T. Graepel. Matchbox:
large scale online Bayesian recommendations. In
WWW, pages 111–120, 2009.

