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INV ITED
P A P E R

Web Scale Media
Recommendation Systems

By Gideon Dror, Noam Koenigstein, and Yehuda Koren

ABSTRACT | Modern consumers are inundated with choices. A

variety of products are offered to consumers, who have

unprecedented opportunities to select products that meet

their needs. The opportunity for selection also presents a time-

consuming need to select. This has led to the development of

recommender systems that direct consumers to products

expected to satisfy them. One area in which such systems are

particularly useful is that of media products, such as movies,

books, television, and music. We study the details of media

recommendation by focusing on a large scale music recom-

mender system. To this end, we introduce a music rating data

set that is likely to be the largest of its kind, in terms of both

number of users, items, and total number raw ratings. The data

were collected by Yahoo! Music over a decade. We formulate a

detailed recommendation model, specifically designed to

account for the data set properties, its temporal dynamics,

and the provided taxonomy of items. The paper demonstrates a

design process that we believe to be useful at many other

recommendation setups. The process is based on gradual

modeling of additive components of the model, each trying to

reflect a unique characteristic of the data.

KEYWORDS | Collaborative filtering; matrix factorization;

recommender systems; Yahoo! Music

I . INTRODUCTION

Web retailers and content providers offer a large selection

of products, with unprecedented opportunities to meet a

variety of special needs and tastes. Consequently, the web

has generated huge collections of recorded human ratings
and interactions with an assortment of products. This

opened an opportunity for recommender systems that

analyze patterns of user interest in products to provide

personalized recommendations that suit a user’s taste. As

leading e-commerce companies and websites have made

recommender systems prominent, the last decade has

brought extensive research and rapid developments to the

field [1].
Recommender systems are particularly useful for

media products such as movies, music, and TV shows.

Indeed, media products come in large varieties, cater to

different tastes, and are usually cheap to purchaseVan

ideal setup for making automated recommender systems

vital and successful. In addition, customers have proven

willing to indicate their level of satisfaction with specific

media items, so that a massive volume of data is available
as to which items appeal to which customers. Proper

analysis of this data can be used to recommend suitable

items to particular customers.

Even though media products are a natural domain for a

recommender system, creating such a successful system is

challenging. The designer needs to model the very elusive

human taste appropriately, and deal with the fact that

humans constantly change and redefine their preferences.
Furthermore, balancing between a detailed modeling of

heavy users and an adequate modeling of newcomers

within a single model makes the task all the more

challenging. Finally, systems often need to combine

various types of signals, such as different kinds of feedback

originating from its users together with external third-

party data describing the offered items.

Given the challenges above, we describe a recom-
mender system built for Yahoo! Music as a case study and

an example to approaching large scale recommendations.

Accordingly, we compiled one of the largest publicly
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available data sets, which contains over 250 million
ratings, more than a million users and above half a million

items. We analyze the data properties, which genuinely

reflect the wisdom of a large crowd and its cumulative taste

in music, as well as phenomena related to the operation of

the service.

In order to facilitate quality personalized item

recommendations, the system learns to model the many

kinds of interactions existing in the data. These interac-
tions are manifested through the varying ratings users give

to items. The different rating levels reflect many factors

underlying the data including: varying items’ popularity,

different ways users interact with the rating widget,

temporal dynamics affecting both users and items, and

finally truly different tastes in music. By devising a detailed

model for explaining and capturing the factors driving

observed ratings, we can reason on which items fit a user,
the ultimate goal of a recommender system.

Our system is described in an incremental manner,

where the gradually added components are designed to

capture more patterns present in the data set. Although we

focus on a specific data set, the phenomena we describe

and model are common to many recommendation data

sets. Furthermore, the gradual description of the model

also parallels the structured processes we typically follow
when developing a recommendation model.

II . BACKGROUND

Broadly speaking, recommender systems are based on two

different strategies. The content analysis (CA) approach

(aka, content filtering) creates a profile for each user or

product to characterize its nature. The resulting profiles
allow programs to associate users with matching products.

Of course, content based strategies require gathering

external information that might not be available or easy to

collect.

A known successful realization of CA is the Music
Genome Project, which is used within the internet radio

service Pandora.com. Each song in the Music Genome

Project is scored on hundreds of distinct musical
characteristics by a trained music analyst. These attributes

(or, Bgenes[) capture not only the musical identity of a

song, but also many significant qualities that are relevant

to understanding the musical preferences of listeners.

Other music CA approaches analyze the audio content for

characterizing tracks and establishing item-to-item simi-

larities [2]. For example, Mel-Frequency Cepstral Coeffi-

cients are often used to generate feature vectors that can
be used to find other items with acoustic resemblance [3],

[4]. This, of course, requires a significant signal processing

and analysis effort on all the available songs. In other

domains, textual attributes, cultural information, social

tags, and other kinds of web-based annotations are

employed for characterizing the items in the inventory.

For example, a movie profile could include attributes

regarding its genre, the participating actors, its box office
popularity, etc. Typically in CA, a major challenge is to

find the best attributes that describe the items. Nonethe-

less, it is often impossible to define attributes that describe

all the different types of relations between the items. In

music, for example, it is difficult to capture the social

context of songs which is often attributed to a mixture of

evasive concepts such as the lyrics meaning, the way the

artist dresses, her hometown, ethnicity, and countless
other factors.

Collaborative filtering (CF), which is our focus in this

work, is an alternative to CA. CF relies only on past

behavior of users, e.g., their previous transactions or

product ratings, thus overcoming the need for creating

explicit profiles. CF analyzes relationships between users

and interdependencies among products, in order to

identify new user-item associations. A major appeal of
CF is that it is domain free, yet it can address aspects of the

data that are often elusive and very difficult to profile

using CA.

Algorithms based on collaborative filtering typically

suffer from the cold-start problem when encountering

items with little rating information [5]. Several hybrid

approaches are suggested for merging CA and CF; see

[6]–[8] for some of the more recent approaches. They allow
relying on item attributes when rating information is not

sufficient, while still enjoying the improved accuracy CF

offers as more ratings are gathered.

In order to establish recommendations, CF systems

need to relate two fundamentally different entities: items

and users. There are two primary approaches to facilitate

such a comparison, which constitute the two main

techniques of CF: the neighborhood approach and latent
factor models. Neighborhood methods focus on relation-

ships between items or, alternatively, between users. An

item–item approach [9], [10] models the preference of a

user to an item based on ratings of Bneighboring[ items by

the same user. The neighbors of a product are other

products that tend to be scored similarly when rated by the

same user. For example, consider the well-known song

BSmells Like Teen Spirit[ on the well-known album
BNevermind[ by the American grunge rock group

BNirvana.[ Its neighbors might include other BNirvana[
albums, similar Alternative Rock artists (e.g., Pearl Jam),

or other popular music from the 1990s. To predict a

particular user’s rating for BNevermind,[ we would look

for the album’s nearest neighbors that were actually rated

by that user. A dual to the item-item approach is the user-

user approach, which identifies like-minded users who can
complement each other’s missing ratings.

Latent factor models represent an alternative approach

that tries to explain the ratings by characterizing both

items and users as vectors in a space of tens to hundreds of

latent factors, inferred from the pattern of ratings. In a

sense, such factors comprise a computerized analogue to

the aforementioned human created song genes. In music,
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factors discovered by the decomposition might measure
obvious dimensions such as genres, tempo or pitch or less

well-defined dimensions such as the emotions provoked by

the song or the social target audience.

One of the most successful realizations of latent factor

models is based on matrix factorization; see, e.g., [11].

These methods have become very popular in recent years

by combining good scalability with predictive accuracy. In

addition, they offer considerable flexibility in modeling
diverse real life situations. This paper will describe various

aspects and recent developments concerning matrix

factorization methods.

Recommender systems rely on various types of input.

Most convenient is high quality explicit feedback, where

users directly report their interest in products. For

example, Netflix collects star ratings for movies and

TiVo users indicate their preferences for TV shows by
hitting thumbs-up/down buttons. The Yahoo! Music data,

which will be described shortly, also contains explicit

feedback in the form of 0–100 ratings. Still, we should

mention that explicit feedback is often not available. In

such cases, recommenders infer user preferences from the

more abundant implicit feedback, which indirectly reflect

opinion through observing user behavior. Types of implicit

feedback include purchase history, browsing history,
search patterns, or even mouse movements. For example,

a user who has listened to many songs of an artist implicitly

gives a positive feedback for that artist.

Regardless of the kind of feedback, system accuracy can

greatly improve by considering also the context of the

provided feedback. For example, was the rating provided

to a song suggested by the system, or followed listening to a

song chosen by the user? Or, did the user listen to the song
just before rating it or not? Such effects are known to bear

much impact on the provided rating values. Of a particular

relevance to the Yahoo! Music data, which this work

addresses, Marlin et al. [12] have shown strong selection

effects leading users to deliberately rate more often the

items they actually like. In a later work, Marlin and

Zemel [13] suggested models for coping with such effects.

The various effects influencing user selection are strongly
related to the sparseness patterns found in the data, to

which we now turn.

In a typical rating data set, most users rate only a small

fraction of the items, thereby leaving most user-item

relations unknown. Thus, a key characteristic of collabo-

rative filtering is the need to analyze a sparse and highly

nonuniform data set. The reader should note that unlike

most other sparse problems, the unknown values should
not assume any particular default value (e.g., 0) but rather

are truly missing. Such sparseness raises challenges such as

the risk of overfitting users (or items) for which only a few

ratings are available, and the inability to use standard

analysis tools, which rely on having a full knowledge of the

data set. Furthermore, it is desired that CF methods exploit

the data sparseness for making computations more

scalable. Hence, direct implementations of the aforemen-
tioned neighborhood methods are generally less scalable as

they represent all possible item–item (or, user–user)

relations. Similarly, matrix factorization methods which

model the full user–item matrix by imputing suitable

values into the missing entries would not scale well.

Indeed, when addressing large scale data sets, one should

look for models that treat only the known ratings and thus

scale linearly with data size.
Another challenge a recommender faces is the dynamic

nature of the recommendation domain. Item perception

and popularity are constantly changing as new items are

introduced into the system and as a result of various social

phenomena. Similarly, user inclinations are evolving,

leading them to ever redefine their taste [14]. Thus,

modeling temporal dynamics should be key when design-

ing recommender systems. However, this raises unique
challenges. In a system that models a complex interaction

of numerous products and customers, many different

characteristics are shifting simultaneously. Those shifts are

often quite delicate and are associated with a few data

instances. We will pay special attention to modeling these

temporal changes, which our experiments show to be

crucial to model accuracy.

While this work concentrates on scalable solutions for
improved recommendation accuracy, the reader should

note that recommendation systems strive to optimize

additional metrics. For example, systems typically present

the user a list of recommended items, hence full list

optimization should also be considered, frequently as a

postprocessing phase. Here, not only the relevance of each

single item matters, but also considerations like the

diversity of the item list and its ability to cover different
genres in order to increase the chance that the user will

find at least one item of interest. Further, users mostly

benefit from novel recommendations for items they are

not aware of, which tend to be the less popular items.

Hence, a desired metric is serendipity. Finally, going even

further from quantitative metrics, it is highly desired that

the recommendation mechanism will be transparent and

accompanied with a short description to why a specific
product was recommended to the user. This helps in

improving the users’ trust in the system and their ability to

put recommendations in the right perspective. For more

on the different aspects on which recommendation

systems are evaluated the reader is referred to [15]–[17].

III . THE YAHOO! MUSIC DATA SET

A. Yahoo! Music Radio Service
Yahoo! Music1 was one of the first providers of

personal internet music radio stations, with a database of

1new.music.yahoo.com.
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hundreds of thousands of songs. As a pioneer in online
music streaming, it influenced many subsequent services.

Yahoo! Music used to be the top ranked online music site

in terms of audience reach and total time spent. The

service was free with some commercial advertising in

between songs that could be removed by upgrading to a

premium account. Users could rate songs, artists, albums

and even genres on a five-star system, or using a slider

interface. These ratings were used by Yahoo! Music to
generate recommendations that match the user’s taste,

based on either the taxonomy of items or on recommenda-

tions of other users with similar musical tastes.

B. Ratings Data Set
This work is based on a data set sampled from the

Yahoo! Music database of ratings collected during

1999–2010.2 The data set comprises 262 810 175 ratings

of 624 961 music items by 1 000 990 users. The ratings

include one-minute resolution timestamps, allowing

refined temporal analysis. Each item and each user has
at least 20 ratings in the whole data set. The available

ratings were split into train, validation and test sets, such

that the last six ratings of each user were placed in the

test set and the preceding four ratings were used in the

validation set. The train set consists of all earlier ratings

(at least 10). The total sizes of the train, validation, and

test sets are therefore 252 800 275, 4 003 960, and

6 005 940, respectively. Fig. 1 depicts the weekly number
of ratings and the weekly mean ratings score versus the

number of weeks that passed since the launch of the

service on 1999.

The ratings are integers between 0 and 100. Fig. 2

depicts the distribution of ratings in the train set using a

logarithmic vertical scale. The vast majority of the ratings

are multiples of ten, and only a minuscule fraction are not.

This mixture reflects the fact that several interfaces

(Bwidgets[) were used to rate the items, and different

users had different rating Bstrategies.[ While different

widgets have different appearances, scores have always

been stored internally at a common 0–100 scale. We
possess only the 0–100 internal representation, and do not

know the exact widget used for creating each rating. Still,

the popularity of a widget used to enter ratings at a B1[- to

B5[-star scale is reflected by the dominance of the peaks at

0, 30, 50, 70, and 90 into which star ratings were

translated.

An interesting aspect of the data is the fact that widgets

have been altered throughout the years. Fig. 3 depicts the

2Publicly available at http://webscope.sandbox.yahoo.com/catalog.php?
datatype=c, with thousands of downloads currently on record.

Fig. 1. Yahoo! Music data set: Number of ratings and mean rating score

versus time in weeks.
Fig. 2. Ratings distribution.

Fig. 3. Relative frequency of the three groups of ratings

as a function of time.
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relative frequency of each of the three types of ratings. In

the first group are the ratings corresponding to the five

dominant peaks of Fig. 2 (0, 30, 50, 70, and 90). The
second group includes the remaining peaks (10, 20, 40, 60,

80, and 100), and the third group contains the remaining

ratings (those not divisible by 10). Abrupt changes in the

relative frequencies of the three groups may be clearly

observed on the 125th week as well as on the 225th week.

These dates are also associated with a dramatic change in

mean rating, as can be observed in Fig. 1.

We calculated the mean rating of each user, as well as
the mean rating of each item. Fig. 4 depicts these two

distributions. The location of the modes (at 89 and 50,

respectively), as well as the variances of the two

distributions are quite distinct. In addition, the distribu-

tion of the mean user ratings is significantly more skewed.

Different rating behavior of users accounts for the

apparent difference between the distributions. It turns out

that users who rate more items tend to have considerably

lower mean ratings. Fig. 5 substantiates this effect. Users

were binned according to the number of items they rated,

on a linear scale. The graph shows the median of the mean
ratings in each bin, as well as the interquantile range in

each bin plotted as a vertical line. One of the explanations

for this effect is that Bheavy[ raters, those who explore and

rate tens of thousands of items, tend to rate more items

that do not match their own musical taste and preferences,

and thus the rating scores tend to be lower.

A distinctive feature of this data set is that user ratings

are given to entities of four different types: tracks, albums,
artists, and genres. The majority of items (81.15%) are

tracks, followed by albums (14.23%), artists (4.46%), and

genres (0.16%). The ratings however, are not uniformly

distributed: Only 46.85% of the ratings belong to tracks,

followed by 28.84% to artists, 19.01% to albums and 5.3%

to genres. Moreover, these proportions are strongly

dependent on the number of ratings a user has entered.

Heavier raters naturally cover more of the numerous
tracks, while the light raters mostly concentrate on artists;

the effect is shown in Fig. 6. Thus, unlike the train set, the

validation and test sets, which equally weight all users, are

dominated by the many light-raters and dedicate most of

their ratings to artists rather than to tracks; see Table 2.

Interestingly, the rating distribution of each of the types is

very similar to that exhibited by the set of all items,

depicted in Fig. 2.
All rated items are tied together within a taxonomy.

That is, for a track we know the identity of its album,

performing artist and associated genres. Similarly we have

Fig. 4. The distributions of item and user mean ratings.

Fig. 5. Median of user ratings as a function of the number of ratings

issued by the user. The vertical lines represent inter-quartile range.

Fig. 6. The fraction of ratings the four item types receive as a function

of the number of ratings a user gives.
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artist and genre annotation for the albums. There is no
genre information for artists, as artists may switch between

many genres in their career. We show that this taxonomy is

particularly useful, due to the large number of items and

the sparseness of data per item (mostly attributed to

Btracks[ and Balbums[).

Although this section focuses on the Yahoo! Music data

set, many of the characteristics described here are not

limited to this data set. A hierarchy of item categories, for
example, is a very common feature relevant to most web

recommender systems. Indeed, e-commerce sites, e.g.,

those selling books, movies or electronics, tend to arrange

their items within a taxonomy. Our experience is that

other recommender system data sets (like the Netflix data

set [18]) also exhibit power law distributions of both

number of ratings per item and number of ratings per user,

producing effects similar to that of Fig. 4. A nonstationary
distribution of ratings as depicted in Fig. 1 is also a

common phenomenon, which usually stems from the

change in the supply of items, from upgrades of web

interfaces or from social, political or economic trends

affecting the taste and inclination of the users; see, e.g., [14].

On the other hand, we are not aware of other

recommender system data sets where items attached to

different levels of the taxonomy can be rated. While this
phenomenon is more relevant to music data sets, one

could reasonably imagine movie recommenders asking

users to rate full genres, or book recommenders asking

users to rate book authors.

IV. NOTATION

We reserve special indexing letters for distinguishing users

from items: for users u, and for items i. A rating rui

indicates the rating given by user u to item i. We

distinguish predicted ratings from known ones using the
notation r̂ui for the predicted value of rui.

For tracks, we denote by albumðiÞ and artistðiÞ the

album and the artist of track i respectively. Similarly, for

albums, we denote by artistðiÞ the artist of album i. Tracks

and albums in the Yahoo! Music data set may belong to one

or more genres. We denote by genresðiÞ the set of genres

of item i. Lastly, we denote by typeðiÞ the type of item i,
with typeðiÞ 2 ftrack; album; artist; genreg.

We are training our models in order to minimize the

squared error, which is a common measure in rating-based

recommenders. In particular, the accuracy of the model is

measured by its root mean squared error (RMSE) on the

test set defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðu;iÞ2Testðr̂ui � ruiÞ2

jTestj

s
: (1)

V. BIAS MODELING

A. The Importance of Biases
In the context of rating systems, biases model the

portion of the observed signal that is derived either

solely by the user or solely by the rated item, but not by

their interaction. For example, a user bias may model a

user’s tendency to rate higher or lower than the average

rater, while an item bias may capture the extent of the
item’s popularity. Fig. 4 illustrates the fact that the mean

ratings of various users and items are quite diverse,

suggesting the importance of modeling these two types of

biases.

A general framework for capturing the bias of the

rating by user u to item i is described as

bui ¼ �þ Bi þ Bu (2)

where � is the overall mean rating value (a constant), and

Bi and Bu stand for item and user biases, respectively.

Since components of the user bias are independent of

the item being rated, while components in the item bias

are independent of any user, they do not take part in

modeling personalization, e.g., modeling the musical taste
of a user. After all, ordering items by using only a bias

model (2) necessarily produces the same ranking for all

users, hence personalizationVthe cornerstone of recom-

mendation systemsVis not achieved at all. Yet, there is

plenty of evidence that much of the observed variability of

ratings is attributed to biases. Hence, properly modeling

biases would effectively amount to cleaning the data from

patterns unrelated to personalization purposes. This will
allow the personalization part of the model (e.g., matrix

factorization) to be applied to signals much more relevant

to personalization, where users and items do interact.

We investigated adding different bias components that

capture various patterns present in the data set. Accord-

ingly, in this section, we present a rich model for both the

item and user biases, which accounts for the item

taxonomy, user rating sessions, and items’ temporal
dynamics. The model adheres to the framework of (2).

In the following we will gradually develop its Bi and Bu

components. The predictive performance of the various

components of the bias model is discussed in Section VIII.

B. A Basic Bias Model
The most basic bias model captures the main effects

associated with users and items [19]. Following bias
template (2), we set the item bias Bi as a distinct parameter

associated with each item denoted by bi, and similarly the

user bias Bu as a user-specific parameter bu. This gives rise

to the model

bui ¼ �þ bi þ bu: (3)

Dror et al. : Web Scale Media Recommendation Systems
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C. Taxonomy Biases
We start enhancing our bias model by letting item

biases share components for items linked by the taxonomy.

For example, tracks in a good album may all be rated

somewhat higher than the average, or a popular artist

may have all her songs rated a bit higher than the

average. We therefore add shared bias parameters to

different items with a common ancestor in the taxonomy

hierarchy. We expand the item bias model for tracks as
follows:

B
ð0Þ
i ¼ bi þ balbumðiÞ þ bartistðiÞ

þ 1

jgenresðiÞj
X

g2genresðiÞ
bg: (4)

Here, the total bias associated with a track i sums both its

own specific bias modifier ðbiÞ, together with the bias

associated with its album ðalbumðiÞÞ and its artist

ðartistðiÞÞ, and the mean bias associated with its genres

ð1=jgenresðiÞjÞ
P

g 2 genresðiÞ bg .

Similarly for each album we expand the bias model as

follows:

B
ð0Þ
i ¼ bi þ bartistðiÞ þ

1

jgenresðiÞj
X

g2genresðiÞ
bg: (5)

One could view these extensions as a gradual

accumulation of the biases. For example, when modeling
the bias of album i, the start point is bartistðiÞþ
ð1=jgenresðiÞjÞ

P
g2genresðiÞ bg , and then bi adds a residual

correction on top of this start point. Similarly, when i is a

track another track-specific correction is added on top of

the above. As bias estimates for tracks and albums are less

reliable, such a gradual estimation allows basing them on

more robust initial values.

Note that such a framework not only relates items to
their taxonomy ancestors, but (indirectly) also to other

related items in the taxonomy. For example, a track will

get related to all other tracks in its album, and to lesser

extent to all other tracks by the same artist.

Also, note that while artists and genres are less

susceptible to the sparsity problem, they also benefit

from this model as ratings to tracks and albums also

influence the biases of their corresponding artist and
genre.

The taxonomy of items is also useful for expanding the

user bias model. For example, a user may tend to rate

artists or genres higher than songs. Therefore, given an

item i the user bias is

Bð0Þu ¼ bu þ bu;typeðiÞ (6)

where bu is the user specific bias component and bu;typeðiÞ is
a shared component of all the ratings by user u to items of

type typeðiÞ.

D. Rating Sessions Modeling
Ratings are marked by a date and a timestamp with

resolution down to minutes. We used this information for

modeling temporal dynamics of both items and users. We

start by modeling user sessions. It is common for users to
listen to many songs and rate them one after the other. A

rating session is therefore a set of consecutive ratings

without an extended time gap between them. In our

implementation user sessions are separated by at least five

hours idle (no rating activity). There are many psycholog-

ical phenomena that affect ratings grouped in a single

session. These effects are captured by user session biases.

One example is the fact that the order in which the
songs were listened by the user might determine the ratings

scores, a phenomenon known as the drifting effect [20].

Users tend to rate items in the context of previous items

they rated. If the first song a user hears is particularly good,

the following items are likely to be rated by that user lower

than the first song. Similarly, if the user did not enjoy the

first song, the ratings of subsequent songs may shift

upwards. The first song therefore may serve as a reference
rating to all the following ratings. However, with no

absolute reference for the first rating, the user sometimes

find it hard to rate, and some users tend to give it a default

rating (e.g., 70 or 50). Consequently, all the following

ratings in that same session may be biased higher or lower

according to the first rating. Another source for session

biases is the mood of the user. A user may be in a good/bad

mood that may affect her ratings within a particular
session. It is also common to listen to similar songs in the

same session, and thus their ratings become similar.

The Yahoo! Music data set exhibits another form of

session bias, where longer sessions tend to have a lower

mean rating. This is not surprising, given the lower average

rating for Bheavier[ users, as summarized in Fig. 5. But

more importantly, this claim is correct even on a per-user

basis, namely for each user longer sessions tend to have a
significantly lower mean rating. To show this we

calculated for each session the difference, �, between

the mean rating of the session to the mean rating of the

corresponding user. Averaging � over all sessions and

plotting it as a function of the sessions’ length results in

Fig. 7. The error-bars represent a 0.95 confidence interval

of the estimate of the mean value of � for each length. The

latter was binned on a logarithmic scale. The figure shows
that long sessions comprising 100 ratings or more are on

average about two points lower than the mean rating of the

user, whereas the shortest sessions, comprising a single

rating, are on average six points higher than the mean

rating of the user.

To take such effects into account, we added a session

bias term to our user bias model. We denote by

Dror et al. : Web Scale Media Recommendation Systems
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sessionðu; iÞ the rating session of the rating rui, and expand

our user bias model to include session biases

Bð1Þu ¼ Bð0Þu þ bu;sessionði;uÞ: (7)

The session bias parameter bu;sessionði;uÞ models the bias

component common to all ratings of u in the same session

she rated i.

E. Items Temporal Model
The popularity of songs may change dramatically over

time. While users’ temporal dynamics seem to follow
abrupt changes across sessions, items’ temporal dynamics

are much smoother and slower, thus calling for a different

modeling approach. We follow here an approach suggested

by Piotte and Chabbert [21].

Given item i and the time t since i’s first rating, we

define a time dependent item bias as a linear combination

of n temporal basis functions fðtÞ ¼ ðf1ðtÞ; f2ðtÞ; . . . ; fnðtÞÞT
and expand the item bias component to be

B
ð1Þ
i ¼ B

ð0Þ
i þ cT

i fðtÞ (8)

where ci 2 Rn is an item specific vector of coefficients.
Both fðtÞ and ci are learned from data using the

standard RMSE-minimizing stochastic gradient descent

(SGD), which is also used for learning the other model

components; see Section VII-A. In practice, a two-week

course time resolution is sufficient for the rather slow

changing item temporal dynamics, therefore the basis

functions are only estimated at a small number of points

and can be easily learned. This process does not guarantee

an orthogonal or normalized basis, however, it finds a basis

that fits the patterns seen in the data set.
We have found that a basis of four functions is sufficient

to represent the temporal dynamics of item biases in our

data set. Fig. 8 depicts the learned basis functions ffiðtÞg4
i¼1.

Since the coefficients of the basis function can be either

positive or negative, it is hard to give a clear interpretation

to any specific basis function. However, an interesting

observation is that basis functions seem to be have high

gradients right after an item was released, indicating more
dynamic temporal effects in this time period. It is also

interesting to note that after a long time period (above

360 weeks), the temporal basis functions converge into

relatively steady values. This indicates that at a longer

perspective, items seem to have either a positive or a

negative bias, with much less temporal dynamics.

F. Full Bias Model
To summarize, our complete bias model, including

both enhanced user and item biases is (for a track i)

bui ¼ �þ bu;typeðiÞ þ bu;sessionði;uÞ þ bi þ balbumðiÞ

þbartistðiÞ þ
1

jgenresðiÞj
X

g2genresðiÞ
bg þ cT

i fðtuiÞ (9)

where tui is the time elapsed from i’s first rating till u’s

rating of i.
Learning the biases is performed by SGD together with

the other model components as described in Section VII-A.

The extended bias model dramatically reduced the RMSE

even before any personalization components were added

into the model (see results in Section VIII). Biases were

able to absorb much of the effects irrelevant to personal-
ization. Such a Bcleaning[ proved to be a key for accurately

modeling personalization in later stages.

VI. PERSONALIZATION MODEL

Our initial personalization model is based on a classical

matrix factorization approach. Each user u is associated

with a user-factor vector pu 2 Rd, and each item i with an

Fig. 7. The difference between the mean rating of a session to the

mean rating of the corresponding user as a function of session length,

averaged over all sessions.

Fig. 8. Items temporal basis functions ffiðtÞg4
i¼1 versus time since an

item’s first rating measured in weeks.
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item-factor vector qi 2 Rd. Predictions are done using the
rule

r̂ui ¼ bui þ pT
u qi (10)

where bui is the bias model (9), and pT
u qi is the

personalization model which captures user’s u affinity
to item i. In this section, we expand this basic personal-

ization model to encompass more patterns observed in

the data.

A. Taxonomy in Personalization
Musical artists often have a distinct style that can be

recognized in all their songs. Similarly, artists style can be

recognized across different albums of the same artist.

Therefore, we introduce shared factor components to

reflect the affinity of items linked by the taxonomy.

Specifically, for each artist and album i, we employ a factor

vector vi 2 Rd (in addition to also using the aforemen-

tioned qi). We expand our item representation for tracks to

explicitly tie tracks linked by the taxonomy

~qi ¼
def

qi þ valbumðiÞ þ vartistðiÞ: (11)

Therefore, qi represents the difference of a specific track
from the common representation of all other related

tracks, which is especially beneficial when dealing with

less popular tracks.

Similarly, we expand our item representation for

albums to be

~qi ¼
def

qi þ vartistðiÞ: (12)

One may also add shared factor parameters for tracks

and albums sharing the same genre, similarly to the way

genres were exploited for enhancing biases. However, our

experiments did not show an RMSE improvement by
incorporating shared genre information. This indicates

that after exploiting the shared information in albums and

artists, the remaining information shared by common

items of the same genre is limited.

B. Session Specific User Factors
As discussed earlier, much of the observed changes in

user behavior are local to a session and unrelated to longer

term trends. Thus, after obtaining a fully trained model

(hereinafter, BPhase I[) we perform a second phase of

training, which isolates rating components attributed to

session-limited phenomena. In this second phase, when we

reach each user session, we try to absorb the session

specific signal in a separate component of the user factor.
To this end we expand the user representation into

~pu ¼ pu þ pu;session (13)

where the user representation ~pu consists of both the
original user factor pu and the session factor vector

pu;session. We learn pu;session by fixing all other parameters

and making a few (e.g., three) SGD iterations only on the

ratings given in the current session in order to learn

pu;session. After these iterations, we are able to absorb much

of the temporary per-session user behavior into pu;session,

which is not explained by the model learned in Phase I. We

then move to a final relaxation step, where we run one
more iteration over all ratings in the same session, now

allowing all other model parameters to change and shed

away any per session specific characteristics. Since

pu;session already captures much of the per-session effects

of the user factor, the other model parameters adjust

themselves accordingly and capture possible small changes

since the previous rating session. After this relaxation step,

we reset pu;session to zero, and move on to the next session,
repeating the above process. Since we discard pu;session

after iterating through each session, there is no need to

store session vectors for every user and session in the data

set, which makes the described method memory efficient.

VII. MODEL LEARNING AND TUNING

A. Model Learning
Our final prediction model takes the following form:

r̂ui ¼ bui þ ~pT
u ~qi (14)

where bui is the detailed bias model as in (9), ~qi is our

enhanced item factor representation as described in (11)
and (12), and ~pu is defined in (13).

As previously alluded, learning proceeds by stochastic

gradient descent (SGD), where all learned parameters are

L2-regularized. SGD visits the training examples one-by-

one, and for each example updates its corresponding model

parameters. More specifically, for training example ðu; iÞ,
SGD lowers the squared prediction error e2

ui ¼ ðrui � r̂uiÞ2
by updating each individual parameter � by

�� ¼ �� @e2
ui

@�
� �� ¼ 2�eui

@r̂ui

@�
� �� (15)

here � is the learning rate and � is the regularization rate.

The purpose of L2-regularization is to reduce the model

complexity thereby improving its generalization power

Dror et al. : Web Scale Media Recommendation Systems
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into unseen examples. Hence, the constant � controls the
amount of penalty on the L2-norm of the learned

parameters.

Our data set spans over a very long time period

(a decade). In such a long period musical taste of users

slowly drifts. We therefore expect model parameters to

change with time. We exploit the fact that the SGD

optimization procedure gradually updates the model

parameters while visiting training examples one by one.
It is a common practice in online learning to order training

examples by their time, so when the model training is

complete, the learned parameters reflect the latest time

point, which is most relevant to the test period. Since we

perform a batch learning, which includes several sweeps

through the data set, we need to enhance this simple

technique.

We loop through the data in a cyclic manner: we visit
user-by-user, whereas for each user we first sweep forward
from the earliest rating to the latest one, and then (after

also visiting all other users) we sweep backward from the

latest rating to the earliest one, and so on. This way, we

avoid the otherwise discontinuous jump from the latest

rating to the first one when starting a new sweep. This

allows parameters to slowly drift with time as the user

changes her taste. The process always terminates with a
forward iteration ending at the latest rating.

B. Hyper-Parameter Tuning
We used a distinct learning and regularization rates for

each type of learned parameter. For example, item bias and

personalization model parameters may require very

different learning and regularizations rates. As a result,

our model employs over 20 hyperparameters. This grants
us the flexibility to tune learning rates such that, e.g.,

parameters that appear more often in a model are learned

more slowly (and thus more accurately) Similarly, employ-

ing a different regularization parameter for each type of

model parameter allows a better control of model

complexity.

Tuning the hyper-parameters of a model is a costly

procedure: partial derivatives with respect to the hyper-
parameters can not be analytically computed and the

objective function is usually not convex. Thus, some form

of hyper-parameters search is required. Every step in the

search requires running the SGD algorithm on the entire

training data set, with the validation data set used for

optimizing the values of the hyper-parameters.

We resorted to the Nelder–Mead simplex search

algorithm [22], a widely used algorithm with excellent
results on real world scenarios [23] including CF [21]. We

implemented a parallel version of the algorithm [24],

gaining an order of magnitude speedup of the process. We

were using a five-thread parallel process, which tends to

converge after about 20 iterations. A single Nelder–Mead

iteration requires two executions of the model per thread.

The search was conducted in logarithmic space, starting at

a point where all hyper-parameters are set to 10�3. Such an
automatic hyperparameters optimization process was vital

to the development of a rich and modular model.

VIII . RESULTS

A. RMSE Analysis
To isolate the contribution of each component in the

model, we measured the RMSE of our test predictions as we
gradually add components to model: we first add the bias

components, and then personalization model components.

The results are presented in Table 1. The table also states

the SGD training time measured on an Intel 2.13 GHz

Xeon (E7320) CPU.

The first and most basic model is a constant predictor.

In the case of the RMSE cost function, the optimal

constant predictor would be the mean train rating, r̂ui ¼ �;
see row 1 of the table. Row 2 presents the basic bias model

r̂ui ¼ �þ bi þ bu (3). Row 3 reports the results after

adding taxonomy terms, which mitigate data sparseness by

capturing relations between items of the same taxonomy;

see Section V-C. We then added the user session bias of

Section V-D. This gave a significant reduction in terms of

RMSE as reported in row 4. We believe that modeling

session biases in users’ ratings is key in explaining ratings
behavior in domains like music in which users evaluate

and rate multiple items at short time frames. In row 5 we

add the item temporal bias from Section V-E. This term

captures changes in item biases that occur over the lifespan

of items since their first ratings. This bias is especially

useful in domains in which item popularity easily changes

over time such as in music, or data sets in which the rating

history is long. The result in row five reflects the RMSE of
our final bias model (defined in Section V-F), when no

personalization is yet in place.

We move on to personalized models, which utilize a

matrix factorization component of dimension 50. The

model of (10) yields RMSE of 22.9235 (row 6). By adding

taxonomy terms to the item factors, we were able to reduce

this result to 22.8254 (row 7). Finally, in row 8 we report

the full prediction model including user session factors (as
in Section VI-B). The relatively large drop in RMSE, even

Table 1 RMSE of the Evolving Model. Adding Model Components Is

Reducing the RMSE
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when the model is already fully developed, highlights the

significance of temporal dynamics at the user factor level.

Let us consider the effect of the taxonomy on the

RMSE results of each item type. Table 2 breaks down the

RMSE results per item type of the three personalized
models. It is clear that incorporating the taxonomy is most

helpful for the sparsely rated tracks and albums. It is much

less helpful for artists, and becomes counterproductive for

the densely rated genres.

We further investigate the performance of our model as

more factors are added. Fig. 9 depicts the RMSE versus

factors dimensionality. Since we carefully tune the regular-

ization terms, there is no overfitting even as the dimension-
ality reaches 500. However, there are clearly diminishing

returns of increasing dimensionality, with almost no

improvement beyond 100 dimensions. Note that the RMSE

gain given by the taxonomy terms and session factors remains

steady even as the dimensionality increases. The graph

indicates a need for at least 100 dimensions in order to

accurately explain people’s music preferences.

B. Error Rate Analysis
The RMSE metric is a favorable evaluation criteria thanks

to its elegance and mathematical tractability. However, it can
be quite detached from the items’ ranking task, which is often

the ultimate goal of a recommender system. For example,

even a perfectly ranked solution can score arbitrarily badly on
an RMSE scale. We therefore also evaluate the performance

of the model by using a metric that was promoted in the

KDD-Cup’11 challenge.3 We pair each highly rated item

(scored not less than 80) in the test set with a randomly

drawn item not rated by the user. We use the model to rank

the two items for the relevant user. The fraction of wrongly

ranked pairs (Berror rate[) is the metric value. This metric

evaluates the model ability to suggest the Bright[ item to the
user. Henceforth, we refer to this metric as ErrorRate. Note

that ErrorRate generalizes also to items not rated by the user,

and does not constrain the evaluation only to the subset of

items actually rated by the user.

An appealing property of ErrorRate is that it can be

easily adapted to diminish effects attributed to the

tendency of favoring universally popular items. Ranking a

highly rated item above a random item may merely reflect
the ability to separate popular items from less popular ones.

Thus, we modify ErrorRate in a way that better measures

the personalization power of the models. For each highly

rated item in the test set we pick a competing item (unrated

by the user) with probability proportional to the item’s

popularity (popularity is defined as the total number of high

ratings received over the whole population). This way, the

rated and the randomly picked items are coming from the
same distribution. Henceforth, we refer to this metric as

ErrorRatePop. ErrorRatePop emphasizes not only the ability

to accurately predict items that the user will like, but also a

deeper notion of personalization separating the specific

user from the crowd, which is related to the serendipity

goal desired by recommenders (see Section II).

When evaluating under the error rate metrics, we need

to amend the training procedure to account for the facts
that 1) actual rating values are disregarded; 2) nonrated

items are also considered. In order to minimize the

difference from the modeling process described so far, we

still train exactly the same model. However, we consider

only user-item pairs with high rating values (80) and

assume the fictitious rating value of 100 for these pairs. All

other user-item pairs are disregarded. In addition, for each

user, we pair each train rating (scored 100) with a newly
introduced train rating for a randomly-picked item, with

an assigned score of 0. Naturally, for the ErrorRate metric

the random item is picked uniformly across all items, while

for the ErrorRatePop metric the random item is picked

with probability proportional to its popularity. Since time-

stamps are not available for the randomly drawn items, we

discard the modeling of temporal effects.

We evaluate our models using both metrics. Table 3
depicts results for a 100-D model. We also provide a

baseline model which predicts that the item highly rated

by the user is the one more popular (i.e., with more high

ratings) over the whole training data set. Note that the

results under ErrorRatePop are more than twice higher

Fig. 9.RMSE versus dimensionality of factors ðdÞ. We track regular MF,

MF enhanced by taxonomy, and the final model. 3http://kddcup.yahoo.com.

Table 2 RMSE per Item Type for the Three Personalized Models. We Also

Report the Fraction of Each Item Type in the Test Data Set
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than those of ErrorRate. This reflects the high predictive
power of popularity: the model is much more accurate in

identifying the loved items, when benefiting from the

general popularity trends of items. However, we would

argue that ErrorRatePop is a better measure of the actual

personalization power of the algorithm. This observation is

clearly reflected in the results of the baseline model.

Under the ErrorRate metric the baseline model, which

obviously does not learn any personalization patterns,
performs much better than under ErrorRatePop.

We isolate the contribution of the taxonomy by also

training a taxonomy-oblivious model [see (10)]. We observe

that under both metrics, taxonomy enables a reduction in

error rate that is much more pronounced than in the

RMSE case. By modeling taxonomy relations we reduce

ErrorRatePop from 7.80% to 5.83%, indicating the high

utility of incorporating available taxonomy structure into
recommender systems. The effect of dimensionality on

the error rate is illustrated in Fig. 10. For a the taxonomy

aware model we see that increasing the dimensionality,

even beyond 250, benefits the ErrorRatePop results

(unlike the case of the RMSE metric).

C. Further Analysis
Fig. 11 depicts the item factor vectors for some of the

more popular artists and genres based on a 2-D model

ðd ¼ 2Þ. We see that most items are located within a 90�

sector. At the right hand side, we see a concentration of

Hip-Hop, Rap and R&B artists and genres, while various

Rock groups and subgenres of Rock are located on the left

hand side of the sector. The fact that the two groups are
orthogonal, means that there is little correlation between

people who listen to Hip-Hop and people who listen to

Rock. In other words, a user’s tendency towards Hip-Hop

does not convey any information about her taste in Rock.

These two genres (Hip-Hop and Rock) are the most

popular genres in our data set. Therefore, a 2-D system

places them as the main two extremes. Fig. 11 emphasizes

the need for more than two dimensions when modeling
music preferences. Since the two dimensions represent

Rock and Hip-Hop, there are no dimensions left for other

genres. Therefore they are constrained to lie between

these two groups. We thus see a concentration of Pop

genres and artists at an angle that is between Rock and

Hip-Hop. Similarly, genres such as Jazz, Electronic/Dance,

Latin, and an artist such as Bob Marley (Reggae) are placed

somewhere between Hip-Hop and Rock. In higher
dimensional factorization models, all these items become

mostly orthogonal to each another.

The norm of an item vector determines how suitable

that item would be to a user in the same direction. For

example, the vector for the Industrial Rock group Nine

Inch Nails is at an angle between Nirvana and Metallica,

but with a much higher magnitude. However, the latter two

have much larger item biases. This means that while
Nirvana and Metallica tend to get higher ratings in general

(as indicated by their higher item biases), Nine Inch Nails

will get higher inner product values with user vectors in its

direction. Therefore, the ratings for Nine Inch Nails are

more dependent on a user’s musical taste (the personali-

zation component), whereas Metallica and Nirvana are

more popular in general.

Table 3 Error-Rate Analysis: Popularity Effects and Taxonomy Have a

Material Effect in Reducing Error Rate

Fig. 10. Error-rate versus dimensionality of factors ðdÞ. We track

regular MF and MF enhanced by taxonomy under ErrorRate and

ErrorRatePop metrics.

Fig. 11. Visualization of some of the popular genres and artists item

vectors using a 2-D matrix factorization model.
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As we noted above, most of the items are placed within
a 90� sector. We further verified this by computing the

inner product between all possible item pairs when using

50-D factor vectors and found that 96.36% of them were

nonnegative. Hence, negative correlations between items

(Busers who like an item dislike another one[) are rare.

This indicates that in music, personalization is mostly

based on modeling patterns of positive correlations

between items. The prominence of this finding prompted
us to compare it to other domains. We repeated the same

experiment using the Netflix movies data set [18]. We have

found that negative correlations between movies are more

likely than in music. While the majority of inner products

between movie factor vectors are nonnegative, a non-

negligible fraction (32.35%) is of negative inner products.

Common wisdom supported by previous analysis of

rating data sets (e.g., the Netflix data set [18]) suggests that
users and items with more ratings are better modeled.

Consequently, superior performance is expected for such

users. Our results, however, demonstrate the opposite

pattern, where both items and users with fewer train

ratings exhibit substantially lower RMSE. Fig. 12 shows the

mean RMSE of users as a function of the number of their

train set ratings, binned into 200 bins. Contrary to our

expectations, the RMSE is increasing as users rate more. In
order to analyze this phenomenon, we also depict the

mean standard deviation of test ratings for the

corresponding users. The test standard deviation is a

measure of the difficulty of the prediction task, and serves

as a lower bound for the RMSE of a model predicting a

constant value per user. The fact that the mean RMSE and

the mean standard deviation follow a very similar trend

clearly demonstrates that the increase of RMSE is due to
the increase of rating variability for users that rate more.

Furthermore, it is obvious that users with many ratings are

better modeled in the sense that a larger fraction of their

rating variance is explained. An even more pronounced

effect is observed when analyzing the items, as shown in

Fig. 13. Whereas the mean standard deviation rises sharply

with the number of train ratings, the slope of the mean

RMSE is substantially more moderate, and the two cross

for items with several hundred test ratings. Hence, while
modeling high-variance heavily rated items is more

challenging, the model is utilizing the added ratings in

order to explain a growing fraction of the rating variability.

Last, we investigate the rate of performance degrada-

tion as the model is applied to events further into the

future. To this end we associated each test example with

the time elapsed since the last train set rating of the

corresponding user. We then sorted the test ratings in an
ascending order of the elapsed time and divided them into

bins of 10 000 ratings each.

Fig. 14 depicts the mean RMSE and the elapsed time

for each bin. Ratings with a zero elapsed time, which

mostly correspond to user sessions artificially split

between train and test set, were excluded from this

analysis, as they are less relevant for most real recom-

mender system. The plateau on the left part of the figure
suggests that the performance of the model is stable for

about three months since the time it was trained,

whereupon the RMSE of its predictions gradually

increases. Thus, the model needs updating only once in a

month or so in order to exhibit uniform performance.

IX. CONCLUDING REMARKS

Media recommendation systems have amassed much

interest in both research and industrial communities.
Fig. 12. Mean RMSE and test ratings standard deviations of users

versus the number of their train set ratings.

Fig. 13. Mean RMSE and test ratings standard deviations of items

versus the number of their train-set ratings.
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Such systems allow users to cope with the ever growing
product selection, and let media websites personalize their

versatile inventory for the needs of each user. We have

explored some of the challenges and main approaches used

by media recommenders, while focusing on a concrete

music recommendation example.

This work introduced a large scale music rating data

set, which is currently the largest publicly available data

set of its kind. We have chosen to model the data by CF
methods, which can excel without relying on item

identities or attributes. Our results show that detailed

modeling of the various effects that naturally occur in this

data through CF lead to improved predictive performance.

The music rating data set is characterized by an

unusually high number of items (not only of users),

representing a decade of Yahoo! Music service. Items are

multityped, so users rate both tracks, albums, artists, and

genres. The items are arranged within a music taxonomy,
which we showed to be crucial in combating the sparse

ratings associated with them. Many phenomena can be

observed in the data, reflecting the life cycle of the Yahoo!

Music service, usage patterns of different users, the

evolution of song and artist popularity as well as

psychological artifacts of the rating process. The data set

also provides fine timestamps for each performed rating,

thereby allowing a delicate temporal analysis. We have
utilized this information for performing user rating session

analysis. While there are differences between different

media and services, we believe that the methods and

insights illustrated in this paper on the music domain are

broad enough to generalize to other domains.

This paper could not cover all considerations relevant

to building a comprehensive recommender. We would like

to highlight some additional important aspects, which
deserve future research. An online deployment of the

system would raise new challenges. One is evaluating the

interplay between the recommender and the user feedback

within the same environment. Another challenge is an

ongoing update of the model, in order to incorporate new

user feedback in a timely manner. A third challenge is

devising a scalable method for matching each user with the

few items he is predicted to like, without requiring the
evaluation of each possible user–item pair.

While proper modeling improves recommendation

relevance, not less important is a careful collection and

interpretation of the various signals provided by the users.

Recommender designers can greatly benefit by integrating

various types of user feedback, thereby enriching user

representation and helping in modeling users new to the

system. For example, we believe there is much value in
addressing additional kinds of user feedback, like collect-

ing Bplay song[ and Bskip song[ events. A major research

challenge would be combining diverse signals within a

single model. h
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