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ABSTRACT
In the past decade large scale recommendation datasets were pub-
lished and extensively studied. In this work we describe a detailed
analysis of a sparse, large scale dataset, specifically designed to
push the envelope of recommender system models. The Yahoo!
Music dataset consists of more than a million users, 600 thousand
musical items and more than 250 million ratings, collected over a
decade. It is characterized by three unique features: First, rated
items are multi-typed, including tracks, albums, artists and genres;
Second, items are arranged within a four level taxonomy, proving
itself effective in coping with a severe sparsity problem that origi-
nates from the unusually large number of items (compared to, e.g.,
movie ratings datasets). Finally, fine resolution timestamps associ-
ated with the ratings enable a comprehensive temporal and session
analysis. We further present a matrix factorization model exploiting
the special characteristics of this dataset. In particular, the model
incorporates a rich bias model with terms that capture information
from the taxonomy of items and different temporal dynamics of
music ratings. To gain additional insights of its properties, we or-
ganized the KddCup-2011 competition about this dataset. As the
competition drew thousands of participants, we expect the dataset
to attract considerable research activity in the future.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

General Terms
Algorithms

Keywords
recommender systems, collaborative filtering, matrix factorization,
yahoo! music

1. INTRODUCTION
People have been fascinated by music since the dawn of human-

ity. A wide variety of music genres and styles has evolved, reflect-
ing diversity in personalities, cultures and age groups. It comes
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as no surprise that human tastes in music are remarkably diverse,
as nicely exhibited by the famous quotation: “We don’t like their
sound, and guitar music is on the way out” (Decca Recording Co.
rejecting the Beatles, 1962).

Yahoo! Music has amassed billions of user ratings for musical
pieces. When properly analyzed, the raw ratings encode informa-
tion on how songs are grouped, which hidden patterns link various
albums, which artists complement each other, how the popularity
of songs, albums and artists vary over time and above all, which
songs users would like to listen to. Such an analysis introduces
new scientific challenges. Inspired by the success of the Netflix
Prize contest [5], we have created a large scale music dataset and
challenged the research world to model it through the KDD Cup
2011 contest1. The contest released over 250 million ratings per-
formed by over 1 million anonymized users. The ratings are given
to different types of items: tracks, albums, artists, genres, all tied
together within a known taxonomy. At the time of writing, half
throughout the contest, the contest has attracted thousands of ac-
tively participating teams trying to crack the unique properties of
the dataset.

Noteworthy characteristics of the dataset include: First, it is of
a larger scale compared to other datasets in the field. Second, it
has a very large set of items (over 600K) – much larger than simi-
lar datasets, where usually only the number of users is large. This
is mostly attributed to the large number of available music tracks.
Third, there are four different categories of items, which are all
linked together within a defined taxonomy thereby alleviating the
unusually low number of ratings per item. Finally, given the re-
cently shown importance of temporal dynamics in modeling user
rating behavior [13, 26], we included in the dataset a fine reso-
lution of rating timestamps. Such timestamps allow performing
session analysis of user activities or determining the exact order in
which ratings were given. Prior to the release of the dataset, we
have conducted an extensive analysis and modeling of its proper-
ties. This work reports our main results and methodologies. In the
following we highlight our main modeling contributions.

Music consumption is biased towards a few popular artists and
so is the rating data. Therefore, collaborative filtering (CF) tech-
niques suffer from a cold-start problem in many of the less popular
artists in the “long tail” [7]. The problem becomes even more se-
vere when considering individual tracks and albums. We tackle this
item sparsity issue with a novel usage of music taxonomy informa-
tion. Accordingly, we describe a method for sharing information
across different items of the same taxonomy, which mitigates the
problem of predicting items with insufficient rating data.

Our model, which is based on matrix factorization, incorporates
temporal analysis of user ratings, and item popularity trends. We
show the significance of a temporal analysis of user behavior—
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within a refined session-based resolution—in improving the model
predictive accuracy. In particular, we show how to perform such an
analysis in a computationally friendly framework.

Last but not least, we have invested much efforts in uncovering
biases, which is based on our experience that a CF model would
significantly benefit from accounting for user and item biases. In-
deed empirical evidence shows that biases explain a significant part
of the observed rating behavior. Hence, we provide detailed param-
eterizations of biases combining conventional user and item biases
with the readily available taxonomy and temporal information.

2. RELATED WORK
There are several approaches to music recommendations [6, 22]:

• Collaborative Filtering (CF) methods utilize user feedback
(explicit or implicit) to infer relations between users, be-
tween items, and ultimately relate users to items they like.
Unlike the other approaches they are content agnostic and do
not use domain knowledge.

• Signal Filtering methods (also known as “content filtering”)
analyze the audio content for characterizing tracks and es-
tablishing item-to-item similarities [2]. For example, Mel-
Frequency Cepstral Coefficients (MFCCs) are often used to
generate feature vectors, which can be used to find other
items with acoustic resemblance [3, 18].

• Context Based Filtering methods (or, “attribute-based filter-
ing”) characterize items based on textual attributes, cultural
information, social tags and other kinds of web-based anno-
tations [16, 19, 23].

• Human Annotation methods are based on time consuming
annotation of music data such as in Pandora2. Human anno-
tation methods are mostly based on the acoustic similarities,
but may also include social context.

Given the nature of our dataset, we focus on a CF approach. In
general, CF has proved more accurate in predicting rating datasets
devoid of intrinsic item information such as the Netflix dataset [4].
However, algorithms based on collaborative filtering typically suf-
fer from the cold-start problem when encountering items with little
rating information [24]. Several hybrid approaches are suggested
for merging content filtering and CF; see, e.g. some of the more
recent approaches [1, 8, 9]. They allow relying on item attributes
when rating information is not sufficient, while still enjoying the
improved accuracy CF offers as more ratings are gathered. In our
system, we use a taxonomy to share information between rated
items. For example, the representation of tracks with a little rat-
ing data naturally collapses to the representation of their respective
album and artist as described in Sec. 5.3 and 6.1.

We employ a Matrix Factorization (MF) model, which maps
items and users into comparable latent factors. Such techniques
became a popular choice for implementing CF and a survey can be
found at [14]. Typically, in MF a user is modeled by a factor vector
pu ∈ Rd, and an item is modeled by a factor vector qi ∈ Rd. A
predicted rating r̂ui by user u to item i is given by

r̂ui = µ+ bi + bu + pTu qi (1)

where µ is the average rating, and bu and bi are the user and item
biases respectively. The term pTu qi captures the affinity of user u to
item i. Sec. 5 and 6 discuss these components in depth.

User preferences and item popularity tend to drift over time.
Thus, a few recent works [13, 26] highlighted the significance of
a delicate modeling of temporal dynamics when devising collabo-
rative filtering models. Our approach is related to [13]. The two
2www.pandora.com

Train Validation Test
252,800,275 4,003,960 6,005,940

Table 1: Train, validation and test set sizes

notable differences are: (1) This work applies more refined session
analysis rather than working at a coarser day resolution. (2) We
employ a much more memory efficient method for modeling the
way user factor vectors drift over time.

We have also benefited from techniques suggested by Piotte and
Chabbert [21] in their Netflix Prize solution. First, we adopted their
method of using Nelder Mead optimization [20] for automatically
setting meta-parameters, and have taken it a step further by using a
parallel implementation; see Sec. 7.1. Second, we have used their
idea of modeling smooth temporal dynamics by learning to com-
bine several basis functions.

3. THE YAHOO! MUSIC DATASET
Yahoo! Music3 offers a wealth of information and services re-

lated to many aspects of music. We have compiled a dataset of user
ratings of music items collected during a decade of using the Ya-
hoo! Music website. The dataset was released within the first track
of the KDD Cup 2011 contest. It comprises of 262,810,175 ratings
of 624,961 items by 1,000,990 users. The ratings include both date
and one-minute resolution timestamps, allowing refined temporal
analysis. Each item and each user has at least 20 ratings in the
whole dataset. The available ratings were split into train, validation
and test sets such that the last 6 ratings of each user were placed in
the test set and the preceding 4 ratings were used in the validation
set. All earlier ratings (at least 10) comprise the train set. Table 1
details the total number of ratings in the train, validation and test
sets.
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Figure 1: The distribution of ratings. The approximately dis-
crete nature of the distribution is evident

The ratings are integers between 0 and 100. Figure 1 depicts the
distribution of ratings in the train set using a logarithmic vertical
scale. The vast majority of the ratings are multiples of ten, and
only a minuscule fraction are not. This mixture reflects the fact that
several interfaces (“widgets”) were used to rate the items, some of
them changing throughout the years while allowing different usage
options. While different widgets have different appearances, scores
have always been stored internally at a common 0–100 scale. We
possess only the 0–100 internal representation, and do not know
the exact widget used for creating each rating. Still, the popularity
of a widget used to enter ratings at a 1-to-5 star scale is reflected by
3new.music.yahoo.com



the dominance of the peaks at 0, 30, 50, 70 and 90 into which star
ratings were translated.
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Figure 2: The distribution of item mean ratings
Not surprisingly, most items have intermediate mean rating and

only few items have a mean rating on extreme high or low ends of
the scale. Indeed, the distribution of item mean ratings follow a
unimodal distribution, with a mode at 50 as shown in Fig. 2.
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Figure 3: The distribution of user mean ratings
Interestingly, the distribution of item mean ratings presented in

Fig. 2 is very different from the distribution of mean ratings of
users, depicted in Fig. 3: the distribution is now strongly skewed,
with mode shifted to a mean rating of 89. Different rating behavior
of users accounts for the apparent difference between the distri-
butions. It turns out that users who rate more items tend to have
considerably lower mean ratings. Fig. 4 substantiates this effect.
Users were binned according to the number of items they rated, on
a linear scale. The graph shows the median of the mean ratings in
each bin, as well as the inter-quantile range in each bin plotted as a
vertical line. One of the explanations for this effect is that among
the tens of thousands of items rated by the “heavy” raters, the ma-
jority do not match their taste.

A distinctive feature of this dataset is that user ratings are given
to entities of four different types: tracks, albums, artists, and gen-
res. The majority of items (81.15%) are tracks, followed by al-
bums (14.23%), artists (4.46%) and genres (0.16%). The ratings
however, are not uniformly distributed: Only 46.85% of the ratings
belong to tracks, followed by 28.84% to artists, 19.01% to albums
and 5.3% to genres. Moreover, these proportions are strongly de-
pendent on the number of ratings a user has entered. Heavier raters

10
2

10
3

10
4

0

10

20

30

40

50

60

70

80

90

100

Number of Ratings

M
ed

ia
n 

M
ea

n 
R

at
in

g

Figure 4: Median of user ratings as a function of the number
of ratings issued by the user. The vertical lines represent inter-
quartile range.

naturally cover more of the numerous tracks, while the light raters
mostly concentrate on artists; the effect is shown in Fig. 5. Thus,
the validation and test sets, which equally weight all users, are dom-
inated by the many light-raters and dedicate most of their ratings to
artists rather than to tracks; see Table 3.
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Figure 5: The fraction of ratings the four item types receive as
a function of the number of ratings a user gives.

All rated items are tied together within a taxonomy. That is, for
a track we know the identity of its album, performing artist and
associated genres. Similarly we have artist and genre annotation
for the albums. There is no genre information for artists, as artists
may switch between many genres in their career. We show that this
taxonomy is particularly useful, due to the large number of items
and the sparseness of data per item (mostly attributed to “tracks”
and “albums”).

4. NOTATION
We reserve special indexing letters for distinguishing users from

items: for users u, and for items i. A rating rui indicates the rating
given by user u to item i. We distinguish predicted ratings from
known ones using the notation r̂ui for the predicted value of rui.

For tracks, we denote by album(i) and artist(i) the album and
the artist of track i respectively. Similarly, for albums, we denote
by artist(i) the artist of album i. Tracks and albums in the Yahoo!



Music dataset may belong to one or more genres. We denote by
genres(i) the set of genres of item i. Lastly, we denote by type(i)
the type of item i, with type(i) ∈ {track, album, artist, genre}.

5. BIAS MODELING

5.1 Why biases?
When considering their vast explanation power, biases are among

the most overlooked components of recommender models. In the
context of rating systems, biases model the portion of the observed
signal that is derived either solely by the rating user or solely by
rated item, but not by their interaction. For example, user bias may
model a user’s tendency to rate on a higher or lower scale than the
average rater, while the item bias may capture the extent of the item
popularity. A general framework for capturing the bias of the rating
by user u to item i is described as

bui = µ+Bi +Bu (2)

where µ is the overall mean rating value (a constant), and Bi and
Bu stand for item and user biases, respectively.

Since components of the user bias are independent of the item
being rated, while components in the item bias are independent of
any user, they do not take part in modeling personalization, e.g.,
modeling user musical taste. After all, ordering items by using
only a bias model (2) necessarily produces the same ranking for all
users, hence personalization—the cornerstone of recommendation
systems—is not achieved at all.

Lack of personalization power should not be confused with lack
of importance for biases. There is plenty of evidence that much
of the observed variability in rating signal should be attributed to
biases. Hence, properly modeling biases would effectively amount
to cleaning the data from signals unrelated to personalization pur-
poses. This will allow the personalization part of the model (e.g.,
matrix factorization), where users and items do interact, to be ap-
plied to a signal more purely relevant for personalization. Perhaps
the best evidence is the heavily analyzed Netflix Prize dataset [5].
The total variance of the ratings in this dataset is 1.276, correspond-
ing to a Root Mean Squared Error (RMSE) of 1.1296 by a constant
predictor. Three years of multi-team concentrated efforts reduced
the RMSE to 0.8556, thereby leaving the unexplained ratings vari-
ance at 0.732. Hence the fraction of explained variance (known as
R2) is 42.6%, whereas the rest 57.4% of the ratings variability is
due to unmodeled effects (e.g., noise). Now, let us analyze how
much of the explained variance should be attributed to biases, un-
related to personalization. The best published pure bias model [12]
yields an RMSE=0.9278, which is equivalent to reducing the vari-
ance to 0.861 thereby explaining 32.5% of the observed variance.
This (quite surprisingly) means that the vast majority of the 42.6%
explainable variance in the Netflix dataset, should be attributed to
user and item biases having nothing to do with personalization.
Only about 10% of the observed rating variance comes from ef-
fects genuinely related to personalization. In fact, as we will see
later (Sec. 7), our experience with the music dataset similarly indi-
cates the importance role biases play. Here the total variance of the
test dataset is 1084.5 (reflecting the 0-100 rating scale). Our best
model could reduce this variance to around 510.3 (R2 = 52.9%).
Out of this 52.9% explained variance4, once again the vast majority
(41.4%) is attributed to pure biases, leaving about 11.5% to be ex-
plained by personalization effects. Hence, the big importance one

4Unlike the Netflix dataset case in which tremendous efforts were
invested, here we can safely assume that eventually the explained
variance will exceed 52.9% by subsequent works and by blending
multiple predictors.

should put on well modeling biases.
In this section, we present a rich model for both the item and user

biases, which accounts for the item taxonomy, user rating sessions,
and items’ temporal dynamics. The model adheres to the frame-
work of Eq. (2). In the following we will gradually develop its Bi

and Bu components. The predictive performance of the various
components of the bias model is discussed in Sec. 7.

5.2 A basic bias model
The most basic bias model captures the main effects associated

with users and items [11]. Following bias template (2), we set the
item bias Bi as a distinct parameter associated with each item de-
noted by bi, and similarly the user bias Bu as a user-specific pa-
rameter bu. This gives rise to the model

bui = µ+ bi + bu (3)

5.3 Taxonomy biases
We start enhancing our bias model by letting item biases share

components for items linked by the taxonomy. For example, tracks
in a good album may all be rated somewhat higher than the average,
or a popular artist may have all her songs rated a bit higher than the
average. We therefore add shared bias parameters to different items
with a common ancestor in the taxonomy hierarchy. We expand the
item bias model for tracks as follows

B
(0)
i = bi + balbum(i) + bartist(i) +

1

|genres(i)|
∑

g∈genres(i)

bg

(4)
Here, the total bias associated with a track i sums both its own
specific bias modifier (bi), together with the bias associated with
its album (album(i)) and its artist (artist(i)), and the mean bias
associated with its genres( 1

|genres|
∑

g∈G bg).
Similarly for each album we expand the bias model as follows

B
(0)
i = bi + bartist(i) +

1

|genres(i)|
∑

g∈genres(i)

bg (5)

One could view these extensions as a gradual accumulation of
the biases. For example, when modeling the bias of album i, the
start point is bartist(i) +

1
|genres(i)|

∑
g∈genres(i) bg , and then bi

adds a residual correction on top of this start point. Similarly, when
i is a track another item-specific correction is added on top of the
above. As bias estimates for tracks and albums are less reliable,
such a gradual estimation allows basing them on more robust initial
values.

Note that such a framework not only relates items to their tax-
onomy ancestors, but (indirectly) also to other related items in the
taxonomy (e.g., a track will get related to all other tracks in its al-
bum, and to lesser extent to all other tracks by the same artist).

Also, note that while artists and genres are less susceptible to the
sparsity problem, they also benefit from this model as any rating to
track and album also influences the biases of their corresponding
artist and genre.

The taxonomy of items is also useful for expanding the user bias
model. For example, a user may tend to rate artists or genres higher
than songs. Therefore, given an item i the user bias is

B(0)
u = bu + bu,type(i) (6)

where bu is the user specific bias component and bu,type(i) is a
shared component of all the ratings by user u to items of type
type(i).

5.4 User sessions
A distinctive property of the Yahoo! Music dataset is its temporal

information. Each rating is marked by a date and a timestamp with



resolution down to minutes. We used this information for modeling
temporal dynamics of both items and users. We start by modeling
user sessions. Unlike movies, in music it is common for users to
listen to many songs and rate them one after the other. A rating
session is therefore a set of consecutive ratings without an extended
time gap between them. There are many psychological phenomena
that affect ratings grouped in a single session. These effects are
captured by user session biases.

One example is the fact that the order in which the songs were lis-
tened by the user might determine the ratings scores, a phenomenon
known as the drifting effect [10]. Users tend to rate items in the
context of previous items they rated. If the first song a user hears is
particularly good, the following items are likely to be rated by that
user lower than the first song. Similarly, if the user did not enjoy
the first song, the ratings of subsequent songs may shift upwards.
The first song therefore may serve as a reference rating to all the
following ratings. However, with no absolute reference for the first
rating, the user sometimes find it hard to rate, and some users tend
to give it a default rating (e.g., 70 or 50). Consequently, all the fol-
lowing ratings in that same session may be biased higher or lower
according to the first rating. Another source for session biases is
the mood of the user. A user may be in a good/bad mood that may
affect her ratings within a particular session. It is also common to
listen to similar songs in the same session, and thus their ratings
become similar.

To take such effects into account, we added a session bias term
to our user bias model. We thus marked users’ consecutive rat-
ings with session numbers separated by a time gap of at least 5
hours in which the user was idle (no rating activity). We denote by
session(u, i) the rating session of the rating rui, and expand our
user bias model to include session biases

B(1)
u = B(0)

u + bu,session(i,u) (7)

The session bias parameter bu,session(i,u) models the bias compo-
nent common to all ratings of u in the same session he rated i.

5.5 Items temporal dynamics
The popularity of songs may change dramatically over time. While

users’ temporal dynamics seem to follow abrupt changes across
sessions, items’ temporal dynamics are much smoother and slower,
thus calling for a different modeling approach.

Given item i and the time t since i’s first rating, we define a
time dependent item bias as a linear combination of n temporal
basis functions f(t) = (f1(t), f2(t), ...fn(t))

T and expand the
item bias component to be

B
(1)
i = B

(0)
i + cTi f(t) (8)

where ci ∈ Rn is an item specific vector of coefficients.
Both f(t) and ci are learned from data using the standard RMSE-

minimizing stochastic gradient descent (SGD), which is also used
for learning the other model components. In practice, a 2-week
coarse time resolution is sufficient for the rather slow changing item
temporal dynamics, therefore the basis functions are only estimated
at a small number of points and can be easily learned. This process
does not guarantee an orthogonal or normalized basis, however it
finds a basis that fits the patterns seen in the dataset.

We have found that a basis of 4 functions is sufficient to represent
the temporal dynamics of item biases in our dataset. Figure 6 de-
picts the learned basis functions {fi(t)}4i=1. Since the coefficients
of the basis function can be be either positive or negative, it is hard
to give a clear interpretation to any specific basis function. How-
ever, an interesting observation is that basis functions seem to have
high gradients right after an item was released, indicating more dy-
namic temporal effects in this time period. It is also interesting
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Figure 6: Items temporal basis functions {fi(t)}4i=1 vs. time
since an item’s first rating measured in weeks

to note that after a long time period (above 360 weeks), the tem-
poral basis functions converge into relatively steady values. This
indicates that at a longer perspective, items seem to have either a
positive or a negative bias, with much less temporal dynamics.

5.6 Full bias model
To summarize, our complete bias model, including both enhanced

user and item biases is (for a track i)

bui =µ+ bu,type(i) + bu,session(i,u) + bi + balbum(i)

+ bartist(i) +
1

|genres(i)|
∑

g∈genres(i)

bg + cTi f(tui) (9)

where tui is the time elapsed from i’s first rating till u’s rating of i.
Learning the biases is performed by SGD together with the other

model components as described in the next section. The extended
bias model dramatically reduced the RMSE even before any per-
sonalization components were added into the model (see results in
Sec. 7). Biases were able to absorb much of the effects irrelevant
to personalization. Such a “cleaning” proved to be a key for accu-
rately modeling personalization in later stages.

6. PERSONALIZATION MODEL
Our initial personalization model is based on a classical matrix

factorization approach. Each user u is associated with a user-factor
vector pu ∈ Rd, and each item i with an item-factor vector qi ∈
Rd. Predictions are done using the rule

r̂ui = bui + pTu qi (10)

where bui is the bias model (9), and pTu qi is the personalization
model which captures user’s u affinity to item i. In this section, we
expand this basic personalization model to encompass more pat-
terns observed in the data.

6.1 Taxonomy in personalization
Musical artists often have a distinct style that can be recognized

in all their songs. Similarly, artists style can be recognized across
different albums of the same artist. Therefore, we introduce shared
factor components to reflect the affinity of items linked by the tax-
onomy. Specifically, for each artist and album i, we employ a factor
vector vi ∈ Rd (in addition to also using the aforementioned qi).
We expand our item representation for tracks to explicitly tie tracks



linked by the taxonomy

q̃i
def
= qi + valbum(i) + vartist(i) (11)

Therefore, qi represents the difference of a specific track from the
common representation of all other related tracks, which is espe-
cially beneficial when dealing with less popular items.

Similarly, we expand our item representation for albums to be

q̃i
def
= qi + vartist(i) (12)

One may also add shared factor parameters for tracks and al-
bums sharing the same genre, similarly to the way genres were ex-
ploited for enhancing biases. However, our experiments did not
show an RMSE improvement by incorporating shared genre infor-
mation. This indicates that after exploiting the shared information
in albums and artists, the remaining information shared by common
items of the same genre is limited.

6.2 Session specific user factors
As discussed earlier, much of the observed changes in user be-

havior are local to a session and unrelated to longer term trends.
Thus, after obtaining a fully trained model (hereinafter, “Phase I”)
we perform a second phase of training, which isolates rating com-
ponents attributed to session-limited phenomena. In this second
phase, when we reach each user session, we try to absorb any ses-
sion specific signal in separated component of the user factor. To
this end we expand the user representation into

p̃u = pu + pu,session (13)

where the user representation p̃u consists of both the original user
factor pu and and the session factor vector pu,session. We learn
pu,session by fixing all other parameters and making a few (e.g.,
3) SGD iterations only on the ratings given in the current session
in order to learn pu,session. After these iterations, we are able
to absorb much of the temporary per-session user behavior into
pu,session, which is not explained by the model learned in Phase
I. We then move to a final relaxation step, where we run one more
iteration over all ratings in the same session, now allowing all other
model parameters to change and shed away any per session spe-
cific characteristics. Since pu,session already captures much of the
per-session effects of the user factor, the other model parameters
adjust themselves accordingly and capture possible small changes
since the previous rating session. After this relaxation step, we re-
set pu,session to zero, and move on to the next session, repeating
the above process.

Our approach is related to [13], which has also employed day
specific factor vectors for each user. However, there are two no-
table differences. First, we apply a more refined session analysis
rather than working at a coarser day resolution. Second, we em-
ploy a much more memory efficient method: since we discard the
per session components pu,session after iterating through each ses-
sion, there is no need to store session vectors for every session in
the dataset. At the time of prediction, we only use the last session
vector. We therefore avoid the high memory consumption that oc-
curs in previous approaches. For example, our dataset consists of
13,844,810 ratings sessions (for all users). Using a 100-D factoriza-
tion model with single precision floating point numbers (4 bytes),
it would have taken more than 5.5GB of memory to store all the
user session factors, significantly larger than the 400MB required
to store only a single session factor for each user.

6.3 Learning the model
Our final prediction model takes the following form

r̂ui = bui + p̃Tu q̃i (14)

where bui is the detailed bias model as in (9), q̃i is our enhanced
item factor representation as described in (11) and (12), and p̃u is
defined in (13).

As previously alluded, learning proceeds by stochastic gradient
descent (SGD), where all learned parameters are L2-regularized.
SGD visits the training examples one-by-one, and for each example
updates its corresponding model parameters. More specifically, for
training example (u, i), SGD lowers the squared prediction error
e2ui = (rui − r̂ui)

2 by updating each individual parameter θ by

∆θ = −η
∂e2ui
∂θ

− λθ = 2ηeui
∂r̂ui
∂θ

− λθ (15)

here η is the learning rate and λ is the regularization rate.
Our dataset spans over a very long time period (a decade). In

such a long period musical taste of users slowly drifts. We therefore
expect model parameters to change with time. We exploit the fact
that the SGD optimization procedure gradually updates the model
parameters while visiting training examples one by one. It is a com-
mon practice in online learning to order training examples by their
time, so when the model training is complete, the learned parame-
ters reflect the latest time point, which is most relevant to the test
period. Since we perform a batch learning including several sweeps
through the dataset, we need to enhance this simple technique.

We loop through the data in a cyclic manner: we visit user-by-
user, whereas for each user first we sweep forward from the earliest
rating to the latest one, and then (after also visiting all other users)
we sweep backward from the latest rating to the earliest one, and
so on. This way, we avoid the otherwise discontinuous jump from
the latest rating to the first one when starting a new iteration. This
allows parameters to slowly drift with time as the user changes her
taste. The process always terminates with a forward iteration end-
ing at the latest rating.

7. EVALUATION
We learned our model on the train dataset using a stochastic gra-

dient descent algorithm with 20 iterations. We used the validation
dataset for early termination and for setting meta-parameters; see
Sec. 7.1. We then tested the results in terms of RMSE as described
in Sec. 7.2.

7.1 Optimizing with Nelder-Mead
For each type of learned parameter we set a distinct learning rate

(aka, step size) and regularization rate (aka, weight decay). This
grants us the flexibility to tune learning rates such that, e.g., param-
eters that appear more often in a model are learned more slowly
(and thus more accurately). Similarly, the various regularization
coefficients allow assuming different scales for different types of
parameters.

We have used the validation dataset to find proper values for
these meta parameters. Optimization of meta-parameters is a costly
procedure, since we know very little on the behavior of the objec-
tive function, and because every evaluation requires running the
SGD algorithm on the entire dataset. The fact that we have multi-
ple learning and regularization parameters further complicates the
matter. For optimizing more than 20 meta-parameters we resorted
to the Nelder-Mead simplex search algorithm [20]. Though not
guaranteed to converge to the global minimum [15], Nelder-Mead
search is a widely used algorithm with excellent results on real
world scenarios [21, 25]. To speed up the search we implemented



# Model Name RMSE
1 Mean Score 38.0617
2 Items and Users Bias 26.8561
3 Taxonomy Bias 26.2553
4 User Sessions Bias 25.3901
5 Items Temporal Dynamics Bias 25.2095
6 MF 22.9533
7 Taxonomy 22.7906
8 Final 22.5918

Table 2: Root Mean Squared Error (RMSE) of the evolving
model. RMSE reduces while adding model components.

Track Album Artist Genre
%Test 28.7% 11.01% 51.61% 8.68%
MF 27.1668 24.5203 20.9815 15.7887
Taxonomy 26.8899 24.3531 20.8766 15.7965
Final 26.85 24.1854 20.566 15.4801

Table 3: RMSE per item type for the three personalized models.
We also report the fraction of each item type in the test dataset.

a parallel version of the algorithm [17]. We consider such an au-
tomated meta-parameters optimization process as key ingredient in
enabling the development of a rich and flexible model.

7.2 Experimental results
After the parameters optimization step of Sec. 7.1, we fixed the

meta-parameters and re-built our final model using both the train
and validation sets. We then report our results on the test set. We
measured the RMSE of our predictions as we gradually add com-
ponents to the bias models, and then as we gradually add compo-
nents to the personalization model. This approach allows isolating
the contribution of each component in the model. The results are
presented in Table 2.

The most basic model is a constant predictor. In the case of the
RMSE cost function, the optimal constant predictor would be the
mean train rating, r̂ui = µ; see row 1 of the table. In row 2 we
present the basic bias model r̂ui = µ+ bi+ bu (3). In row 3 we re-
port the results after expanding the item and user biases to include
also taxonomy terms, which mitigate data sparseness by capturing
relations between items of the same taxonomy; see Sec. 5.3. We
then added the user session bias of Sec. 5.4. This gave a signifi-
cant reduction in terms of RMSE as reported in row 4. We believe
that modeling session biases in users’ ratings is key in explaining
ratings behavior in domains like music in which users evaluate and
rate multiple items at short time frames. In row 5 we add the item
temporal bias from Sec. 5.5. This term captures changes in item
biases that occur over the lifespan of items since their first ratings.
This bias is especially useful in domains in which item popularity
easily changes over time such as in music, or datasets in which the
ratings history is long. The result in row 5 reflects the RMSE of
our final bias model (defined in Sec. 5.6), when no personalization
is yet in place.

We move on to personalized models, which utilize a matrix fac-
torization component of dimension 50. The model of (10) yields
RMSE of 22.9235 (row 6). By adding taxonomy terms to the item
factors, we were able to reduce this result to 22.8254 (row 7). Fi-
nally, in row 8 we report the full prediction model including user
session factors (as in Sec. 6.2). The relatively large drop in RMSE,
even when the model is already fully developed, highlights the sig-
nificance of temporal dynamics at the user factor level. The result
given in row 8 puts our model in par with the leading models in
the KDD Cup 2011 competition (as of the time of writing), which
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is notable considering the fact that we are not blending multiple
models, neither impute information taken from the test set.

Let us consider the effect of the taxonomy on the RMSE results
of each item type. Table 3 breaks down the RMSE results per item
type of the three personalized models. It is clear that incorporat-
ing the taxonomy is most helpful for the sparsely rated tracks and
albums. It is much less helpful for artists, and becomes counter-
productive for the densely rated genres.

We further investigate the performance of our model as more
factors are added. Figure 7 depicts the RMSE vs. factors dimen-
sionality. Since we carefully tune the regularization terms, there
is no overfitting even as the dimensionality reaches 500. However,
there are clearly diminishing returns of increasing dimensionality,
with almost no improvement over 100 dimensions. Note that the
reduction in RMSE given by the taxonomy and session factors re-
mains steady even as the dimensionality increases.

Lastly, we investigate the relation of the test RMSE to the time
distance from the train set. Figure 8 depicts the mean RMSE and
the elapsed time for each bin. Ratings with a zero elapsed time,
which mostly correspond to user sessions artificially split between
train and test set, were excluded from this analysis, as they are not
relevant for any real recommender system. The plateau on the left
part of the figure suggests that the performance of the model is sta-
ble for about three months since the time it was trained, whereupon
the RMSE of its predictions gradually increases. Thus the model
needs updating only once in a month or so in order to exhibit uni-
form performance.



8. DISCUSSION
In this work, we introduced a large scale music rating dataset

that is likely to be the largest of its kind. We believe that data
availability is a key in enabling the progress of Web science, as
demonstrated by the impact of the Netflix Prize dataset release. In
the same spirit, we decided to share a large industrial dataset with
the public, and to increase its impact and reach by including it in
the KddCup-2011 contest.

While releasing real commercial data to the research world is
critical to facilitating scientific progress, this process is far from
trivial and definitely not risk free. On the one hand privacy ad-
vocates tend to push for over-sanitizing the data to the extent of
putting an intermediary between the public and the dataset. The
2006 privacy crisis related to the AOL query data release and the
more recent claims concerning privacy of the Netflix data clearly
demonstrate this point. On the other hand, scientists are eager to
receive the data in a form as complete as possible to facilitate un-
restricted analysis. This has put us through a real dilemma, having
to justify the release despite what seems to be a no win situation.

After conducting a thorough due diligence, we opted to release a
sampled dataset, where both users and items are fully anonymized,
which in our opinion maintains a good balance between privacy
needs and scientific progress. The resulting dataset favors the ap-
plication of collaborative filtering (CF) methods, which can excel
without relying on item identities or attributes. We aimed at struc-
turing the data in a way that offers a potential to sharpen current CF
methods, by posing new scientific challenges and methodologies
not offered by most prior datasets. The developments permitted by
using the dataset, such as those discussed in this paper, are likely to
be applicable at other setups, not necessarily music-related, reaping
the benefits of using the domain-free CF approach.

Prior to releasing a dataset it is essential to go through data orga-
nization and sanitization. Consequently, we conducted an intensive
analysis of the dataset to ensure a successful public release. The
efforts reported in this work are based on our pre-release exten-
sive analyzing and modeling efforts. We formulated a detailed col-
laborative filtering model, specifically designed to account for the
dataset properties. The underlying design process can be valuable
in many other recommendation setups. The process is based on
gradual modeling of additive components of the model, each trying
to reflect a unique characteristic of the data. Within this process, a
major lesson is the need to dedicate significant efforts to estimating
and modeling biases in the data, which tend to capture much of the
observed data variability. Analyzing the effect of each component
on the performance of the model supports this approach.

Finally, we are encouraged by the large number of teams (over
1000) currently analyzing the dataset within the KddCup-2011 con-
test, and look forward to observing new progress and getting new
insights from the contest community.
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